No Arabic abstract
We study an inflation model with a nonlinear sigma field which has $SO(3)$ symmetry. The background solution of the nonlinear sigma field is proportional to the space coordinates linearly while keeping the homogeneous and isotropic background spacetime. We calculate the observable quantities including the power spectra of the scalar and tensor modes, the spectral indices, the tensor-to-scalar ratio, and the running of the spectral indices, and then constrain our model with the Planck 2015 observational data.
The constraints on a general form of the power-law potential and the dissipation coefficient in the framework of warm single field inflation imposed by Planck data will be investigated. {By Considering a quasi-static Universe, besides a slow-roll condition, the suitable regions in which a pair of theoretical free parameters are in good agreement with Planck results will be estimated}. In this method instead of a set of free parameters, we can visualize a region of free parameters that can satisfy the precision limits on theoretical results. On the other side, when we consider the preformed quantity for the amplitude of scalar perturbations, the conflict between obtained results for free parameters in different steps dramatically will be decreased. {As have done in prominent} literature, based on the friction of the environment, we can divide the primordial Universe to the two different epochs namely weak and strong dissipative regimes. For the aforementioned eras, the free parameters of the model will be constrained and the best regions will be obtained. To do so, the main inflationary observables such as tensor-to-scalar ratio, power-spectra of density perturbations and gravitational waves, scalar and tensor spectral indices, running spectral index and the number of e-folds in both weak and strong regimes will be obtained. Ultimately, it can be visualized, this model can make concord between theoretical results and data originated from cosmic microwave background and Planck $2013$, $2015$ and $2018$.
We study slow-roll inflation with a Gauss-Bonnet term that is coupled to an inflaton field nonminimally. We investigate the inflationary solutions for a specific type of the nonminimal coupling to the Gauss-Bonnet term and inflaton potential both analytically and numerically. We also calculate the observable quantities such as the power spectra of the scalar and tensor modes, the spectral indices, the tensor-to-scalar ratio and the running spectral indices. Finally, we constrain our result with the observational data by Planck and BICEP2 experiment.
The paper presents late time cosmology in $f(Q,T)$ gravity where the dark energy is purely geometric in nature. We start by employing a well motivated $f(Q,T)$ gravity model, $f(Q,T)=mQ^{n}+bT$ where $m,n$ and $b$ are model parameters. Additionally we also assume the universe to be dominated by pressure-less matter which yields a power law type scale factor of the form $% a(t)=c_{2}(At+c_{1})^{frac{1}{A}}$, where $A=dfrac{3(8pi +b)}{n(16pi +3b)% }$ and $c_{1}$ & $c_{2}$ are just integration constants. To investigate the cosmological viability of the model, constraints on the model parameters were imposed from the updated 57 points of Hubble data sets and 580 points of union 2.1 compilation supernovae data sets. We have thoroughly investigated the nature of geometrical dark energy mimicked by the parametrization of $f(Q,T)=mQ^{n}+bT$ with the assistance of statefinder diagnostic in ${s,r}$ and ${q,r}$ planes and also performed the $Om$ -diagnostic analysis. The present analysis makes it clear-cut that $f(Q,T)$ gravity can be promising in addressing the current cosmic acceleration and therefore a suitable alternative to the dark energy problem. Further studies in other cosmological areas are therefore encouraging to further investigate the viability of $f(Q,T)$ gravity.
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function approximation. The derived $n_s-r$ results for the constant-roll inflation are also compared with the observations, we find that only one constant-roll inflation is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
The Friedmann-Robertson-Walker (FRW) cosmology is analyzed with a general potential $rm V(phi)$ in the scalar field inflation scenario. The Bohmian approach (a WKB-like formalism) was employed in order to constraint a generic form of potential to the most suited to drive inflation, from here a family of potentials emerges; in particular we select an exponential potential as the first non trivial case and remains the object of interest of this work. The solution to the Wheeler-DeWitt (WDW) equation is also obtained for the selected potential in this scheme. Using Hamiltons approach and equations of motion for a scalar field $rm phi$ with standard kinetic energy, we find the exact solutions to the complete set of Einstein-Klein-Gordon (EKG) equations without the need of the slow-roll approximation (SR). In order to contrast this model with observational data (Planck 2018 results), the inflationary observables: the tensor-to-scalar ratio and the scalar spectral index are derived in our proper time, and then evaluated under the proper condition such as the number of e-folding corresponds exactly at 50-60 before inflation ends. The employed method exhibits a remarkable simplicity with rather interesting applications in the near future.