No Arabic abstract
We study slow-roll inflation with a Gauss-Bonnet term that is coupled to an inflaton field nonminimally. We investigate the inflationary solutions for a specific type of the nonminimal coupling to the Gauss-Bonnet term and inflaton potential both analytically and numerically. We also calculate the observable quantities such as the power spectra of the scalar and tensor modes, the spectral indices, the tensor-to-scalar ratio and the running spectral indices. Finally, we constrain our result with the observational data by Planck and BICEP2 experiment.
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function approximation. The derived $n_s-r$ results for the constant-roll inflation are also compared with the observations, we find that only one constant-roll inflation is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
We propose a novel $k$-Gauss-Bonnet model, in which a kinetic term of scalar field is allowed to non-minimally couple to the Gauss-Bonnet topological invariant in the absence of a potential of scalar field. As a result, this model is shown to admit an isotropic power-law inflation provided that the scalar field is phantom. Furthermore, stability analysis based on the dynamical system method is performed to indicate that this inflation solution is indeed stable and attractive. More interestingly, a gradient instability in tensor perturbations is shown to disappear in this model.
In this paper we study the observational constraints that can be imposed on the coupling parameter, $hat alpha$, of the regularized version of the 4-dimensional Einstein-Gauss-Bonnet theory of gravity. We use the scalar-tensor field equations of this theory to perform a thorough investigation of its slow-motion and weak-field limit, and apply our results to observations of a wide array of physical systems that admit such a description. We find that the LAGEOS satellites are the most constraining, requiring $| hat alpha | lesssim 10^{10} ,{rm m}^2$. This constraint suggests that the possibility of large deviations from general relativity is small in all systems except the very early universe ($t<10^{-3}, {rm s}$), or the immediate vicinity of stellar-mass black holes ($Mlesssim100, M_{odot}$). We then consider constraints that can be imposed on this theory from cosmology, black hole systems, and table-top experiments. It is found that early universe inflation prohibits all but the smallest negative values of $hat alpha$, while observations of binary black hole systems are likely to offer the tightest constraints on positive values, leading to overall bounds $0 lesssim hat alpha lesssim 10^8 , {rm m}^2$.
Regularized Einstein-Gauss-Bonnet (EGB) theory of gravity in four dimensions is a new attempt to include nontrivial contributions of Gauss-Bonnet term. In this paper, we make a detailed analysis on possible constraints of the model parameters of the theory from recent cosmological observations, and some theoretical constraints as well. Our results show that the theory with vanishing bare cosmological constant, $Lambda_0$, is ruled out by the current observational value of $w_{de}$, and the observations of GW170817 and GRB 170817A as well. For nonvanishing bare cosmological constant, instead, our results show that the current observation of the speed of GWs measured by GW170817 and GRB 170817A would place a constraints on $tilde{alpha}$, a dimensionless parameter of the theory, as $-7.78times10^{-16}le tilde{alpha} leq 3.33times10^{-15}$.
We discuss the constant-roll inflation with constant $epsilon_2$ and constant $bareta$. By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, and the tensor to scalar ratio are derived up to the first order of $epsilon_1$. The model with constant $epsilon_2$ is ruled out by the observations at the $3sigma$ confidence level, and the model with constant $bareta$ is consistent with the observations at the $1sigma$ confidence level. The potential for the model with constant $bareta$ is also obtained from the Hamilton-Jacobi equation. Although the observations constrain the constant-roll inflation to be slow-roll inflation, the $n_s-r$ results from the constant-roll inflation are not the same as those from the slow-roll inflation even when $baretasim 0.01$.