Do you want to publish a course? Click here

Constraints on warm power-law inflation in light of Planck results

125   0   0.0 ( 0 )
 Added by Haidar Sheikhahmadi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The constraints on a general form of the power-law potential and the dissipation coefficient in the framework of warm single field inflation imposed by Planck data will be investigated. {By Considering a quasi-static Universe, besides a slow-roll condition, the suitable regions in which a pair of theoretical free parameters are in good agreement with Planck results will be estimated}. In this method instead of a set of free parameters, we can visualize a region of free parameters that can satisfy the precision limits on theoretical results. On the other side, when we consider the preformed quantity for the amplitude of scalar perturbations, the conflict between obtained results for free parameters in different steps dramatically will be decreased. {As have done in prominent} literature, based on the friction of the environment, we can divide the primordial Universe to the two different epochs namely weak and strong dissipative regimes. For the aforementioned eras, the free parameters of the model will be constrained and the best regions will be obtained. To do so, the main inflationary observables such as tensor-to-scalar ratio, power-spectra of density perturbations and gravitational waves, scalar and tensor spectral indices, running spectral index and the number of e-folds in both weak and strong regimes will be obtained. Ultimately, it can be visualized, this model can make concord between theoretical results and data originated from cosmic microwave background and Planck $2013$, $2015$ and $2018$.



rate research

Read More

We investigate warm inflationary scenario in which the accelerated expansion of the early Universe is driven by chameleon-like scalar fields. Due to the non-minimal coupling between the scalar field and the matter sector, the energy-momentum tensor of each fluid component is not conserved anymore, and the generalized balance equation is obtained. The new source term in the energy equation can be used to model warm inflation. On the other hand, if the coupling function varies slowly, the model reduces to the standard model used for the description of cold inflation. To test the validity of the warm chameleon inflation model, the results for warm inflationary scenarios are compared with the observational Planck2018 Cosmic Microwave Background data. In this regard, the perturbation parameters such as the amplitude of scalar perturbations, the scalar spectral index and the tensor-to-scalar ratio are derived at the horizon crossing in two approximations, corresponding to the weak and strong dissipative regimes. As a general result it turns out that the theoretical predictions of the chameleon warm inflationary scenario are consistent with the Planck 2018 observations.
We study an inflation model with a nonlinear sigma field which has $SO(3)$ symmetry. The background solution of the nonlinear sigma field is proportional to the space coordinates linearly while keeping the homogeneous and isotropic background spacetime. We calculate the observable quantities including the power spectra of the scalar and tensor modes, the spectral indices, the tensor-to-scalar ratio, and the running of the spectral indices, and then constrain our model with the Planck 2015 observational data.
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to $n_s = 0.9603 pm 0.0073$, ruling out exact scale invariance at over 5 $sigma$. Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0.11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n > 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining $d n_s/d ln k = -0.0134 pm 0.0090$. Several analyses dropping the slow-roll approximation are carried out, including detailed model comparison and inflationary potential reconstruction. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit $chi^2$ by ~ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with bounds on $f_mathrm{NL}$ measured by Planck. The fractional primordial contribution of CDM isocurvature modes in the curvaton and axion scenarios has upper bounds of 0.25% or 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelation can improve $chi^2$ by approximatively 4 as a result of slightly lowering the theoretical prediction for the $ell<40$ multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.
We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be $n_mathrm{s} = 0.968 pm 0.006$ and tightly constrain its scale dependence to $d n_s/d ln k =-0.003 pm 0.007$ when combined with the Planck lensing likelihood. When the high-$ell$ polarization data is included, the results are consistent and uncertainties are reduced. The upper bound on the tensor-to-scalar ratio is $r_{0.002} < 0.11$ (95% CL), consistent with the B-mode polarization constraint $r< 0.12$ (95% CL) obtained from a joint BICEP2/Keck Array and Planck analysis. These results imply that $V(phi) propto phi^2$ and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as $R^2$ inflation. Three independent methods reconstructing the primordial power spectrum are investigated. The Planck data are consistent with adiabatic primordial perturbations. We investigate inflationary models producing an anisotropic modulation of the primordial curvature power spectrum as well as generalized models of inflation not governed by a scalar field with a canonical kinetic term. The 2015 results are consistent with the 2013 analysis based on the nominal mission data.
We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_mathrm{s}=0.9649pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V (phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا