Do you want to publish a course? Click here

Debunking in a World of Tribes

92   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Recently a simple military exercise on the Internet was perceived as the beginning of a new civil war in the US. Social media aggregate people around common interests eliciting a collective framing of narratives and worldviews. However, the wide availability of user-provided content and the direct path between producers and consumers of information often foster confusion about causations, encouraging mistrust, rumors, and even conspiracy thinking. In order to contrast such a trend attempts to textit{debunk} are often undertaken. Here, we examine the effectiveness of debunking through a quantitative analysis of 54 million users over a time span of five years (Jan 2010, Dec 2014). In particular, we compare how users interact with proven (scientific) and unsubstantiated (conspiracy-like) information on Facebook in the US. Our findings confirm the existence of echo chambers where users interact primarily with either conspiracy-like or scientific pages. Both groups interact similarly with the information within their echo chamber. We examine 47,780 debunking posts and find that attempts at debunking are largely ineffective. For one, only a small fraction of usual consumers of unsubstantiated information interact with the posts. Furthermore, we show that those few are often the most committed conspiracy users and rather than internalizing debunking information, they often react to it negatively. Indeed, after interacting with debunking posts, users retain, or even increase, their engagement within the conspiracy echo chamber.



rate research

Read More

This paper replicates, extends, and refutes conclusions made in a study published in PLoS ONE (Even Good Bots Fight), which claimed to identify substantial levels of conflict between automated software agents (or bots) in Wikipedia using purely quantitative methods. By applying an integrative mixed-methods approach drawing on trace ethnography, we place these alleged cases of bot-bot conflict into context and arrive at a better understanding of these interactions. We found that overwhelmingly, the interactions previously characterized as problematic instances of conflict are typically better characterized as routine, productive, even collaborative work. These results challenge past work and show the importance of qualitative/quantitative collaboration. In our paper, we present quantitative metrics and qualitative heuristics for operationalizing bot-bot conflict. We give thick descriptions of kinds of events that present as bot-bot reverts, helping distinguish conflict from non-conflict. We computationally classify these kinds of events through patterns in edit summaries. By interpreting found/trace data in the socio-technical contexts in which people give that data meaning, we gain more from quantitative measurements, drawing deeper understandings about the governance of algorithmic systems in Wikipedia. We have also released our data collection, processing, and analysis pipeline, to facilitate computational reproducibility of our findings and to help other researchers interested in conducting similar mixed-method scholarship in other platforms and contexts.
The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. Despite the enthusiastic rhetoric on the part of some that this process generates collective intelligence, the WWW also allows the rapid dissemination of unsubstantiated conspiracy theories that often elicite rapid, large, but naive social responses such as the recent case of Jade Helm 15 -- where a simple military exercise turned out to be perceived as the beginning of the civil war in the US. We study how Facebook users consume information related to two different kinds of narrative: scientific and conspiracy news. We find that although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, the sizes of the spreading cascades differ. Homogeneity appears to be the primary driver for the diffusion of contents, but each echo chamber has its own cascade dynamics. To mimic these dynamics, we introduce a data-driven percolation model on signed networks.
Amidst the threat of digital misinformation, we offer a pilot study regarding the efficacy of an online social media literacy campaign aimed at empowering individuals in Indonesia with skills to help them identify misinformation. We found that users who engaged with our online training materials and educational videos were more likely to identify misinformation than those in our control group (total $N$=1000). Given the promising results of our preliminary study, we plan to expand efforts in this area, and build upon lessons learned from this pilot study.
As an emerging business phenomenon especially in China, instant messaging (IM) based social commerce is growing increasingly popular, attracting hundreds of millions of users and is becoming one important way where people make everyday purchases. Such platforms embed shopping experiences within IM apps, e.g., WeChat, WhatsApp, where real-world friends post and recommend products from the platforms in IM group chats and quite often form lasting recommending/buying relationships. How and why do users engage in IM based social commerce? Do such platforms create novel experiences that are distinct from prior commerce? And do these platforms bring changes to user social lives and relationships? To shed light on these questions, we launched a qualitative study where we carried out semi-structured interviews on 12 instant messaging based social commerce users in China. We showed that IM based social commerce: 1) enables more reachable, cost-reducing, and immersive user shopping experience, 2) shapes user decision-making process in shopping through pre-existing social relationship, mutual trust, shared identity, and community norm, and 3) creates novel social interactions, which can contribute to new tie formation while maintaining existing social relationships. We demonstrate that all these unique aspects link closely to the characteristics of IM platforms, as well as the coupling of user social and economic lives under such business model. Our study provides important research and design implications for social commerce, and decentralized, trusted socio-technical systems in general.
In information-rich environments, the competition for users attention leads to a flood of content from which people often find hard to sort out the most relevant and useful pieces. Using Twitter as a case study, we applied an attention economy solution to generate the most informative tweets for its users. By considering the novelty and popularity of tweets as objective measures of their relevance and utility, we used the Huberman-Wu algorithm to automatically select the ones that will receive the most attention in the next time interval. Their predicted popularity was confirmed by using Twitter data collected for a period of 2 months.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا