No Arabic abstract
This paper replicates, extends, and refutes conclusions made in a study published in PLoS ONE (Even Good Bots Fight), which claimed to identify substantial levels of conflict between automated software agents (or bots) in Wikipedia using purely quantitative methods. By applying an integrative mixed-methods approach drawing on trace ethnography, we place these alleged cases of bot-bot conflict into context and arrive at a better understanding of these interactions. We found that overwhelmingly, the interactions previously characterized as problematic instances of conflict are typically better characterized as routine, productive, even collaborative work. These results challenge past work and show the importance of qualitative/quantitative collaboration. In our paper, we present quantitative metrics and qualitative heuristics for operationalizing bot-bot conflict. We give thick descriptions of kinds of events that present as bot-bot reverts, helping distinguish conflict from non-conflict. We computationally classify these kinds of events through patterns in edit summaries. By interpreting found/trace data in the socio-technical contexts in which people give that data meaning, we gain more from quantitative measurements, drawing deeper understandings about the governance of algorithmic systems in Wikipedia. We have also released our data collection, processing, and analysis pipeline, to facilitate computational reproducibility of our findings and to help other researchers interested in conducting similar mixed-method scholarship in other platforms and contexts.
E-Scooters are changing transportation habits. In an attempt to oversee scooter usage, the Los Angeles Department of Transportation has put forth a specification that requests detailed data on scooter usage from scooter companies. In this work, we first argue that L.A.s data request for using a new specification is not warranted as proposed use cases can be met by already existing specifications. Second, we show that even the existing specification, that requires companies to publish real-time data of parked scooters, puts the privacy of individuals using the scooters at risk. We then propose an algorithm that enables formal privacy and utility guarantees when publishing parked scooters data, allowing city authorities to meet their use cases while preserving riders privacy.
Recently a simple military exercise on the Internet was perceived as the beginning of a new civil war in the US. Social media aggregate people around common interests eliciting a collective framing of narratives and worldviews. However, the wide availability of user-provided content and the direct path between producers and consumers of information often foster confusion about causations, encouraging mistrust, rumors, and even conspiracy thinking. In order to contrast such a trend attempts to textit{debunk} are often undertaken. Here, we examine the effectiveness of debunking through a quantitative analysis of 54 million users over a time span of five years (Jan 2010, Dec 2014). In particular, we compare how users interact with proven (scientific) and unsubstantiated (conspiracy-like) information on Facebook in the US. Our findings confirm the existence of echo chambers where users interact primarily with either conspiracy-like or scientific pages. Both groups interact similarly with the information within their echo chamber. We examine 47,780 debunking posts and find that attempts at debunking are largely ineffective. For one, only a small fraction of usual consumers of unsubstantiated information interact with the posts. Furthermore, we show that those few are often the most committed conspiracy users and rather than internalizing debunking information, they often react to it negatively. Indeed, after interacting with debunking posts, users retain, or even increase, their engagement within the conspiracy echo chamber.
This article analyzes users who edit Wikipedia articles about Okinawa, Japan, in English and Japanese. It finds these users are among the most active and dedicated users in their primary languages, where they make many large, high-quality edits. However, when these users edit in their non-primary languages, they tend to make edits of a different type that are overall smaller in size and more often restricted to the narrow set of articles that exist in both languages. Design changes to motivate wider contributions from users in their non-primary languages and to encourage multilingual users to transfer more information across language divides are presented.
As an emerging business phenomenon especially in China, instant messaging (IM) based social commerce is growing increasingly popular, attracting hundreds of millions of users and is becoming one important way where people make everyday purchases. Such platforms embed shopping experiences within IM apps, e.g., WeChat, WhatsApp, where real-world friends post and recommend products from the platforms in IM group chats and quite often form lasting recommending/buying relationships. How and why do users engage in IM based social commerce? Do such platforms create novel experiences that are distinct from prior commerce? And do these platforms bring changes to user social lives and relationships? To shed light on these questions, we launched a qualitative study where we carried out semi-structured interviews on 12 instant messaging based social commerce users in China. We showed that IM based social commerce: 1) enables more reachable, cost-reducing, and immersive user shopping experience, 2) shapes user decision-making process in shopping through pre-existing social relationship, mutual trust, shared identity, and community norm, and 3) creates novel social interactions, which can contribute to new tie formation while maintaining existing social relationships. We demonstrate that all these unique aspects link closely to the characteristics of IM platforms, as well as the coupling of user social and economic lives under such business model. Our study provides important research and design implications for social commerce, and decentralized, trusted socio-technical systems in general.
This article analyzes one month of edits to Wikipedia in order to examine the role of users editing multiple language editions (referred to as multilingual users). Such multilingual users may serve an important function in diffusing information across different language editions of the encyclopedia, and prior work has suggested this could reduce the level of self-focus bias in each edition. This study finds multilingual users are much more active than their single-edition (monolingual) counterparts. They are found in all language editions, but smaller-sized editions with fewer users have a higher percentage of multilingual users than larger-sized editions. About a quarter of multilingual users always edit the same articles in multiple languages, while just over 40% of multilingual users edit different articles in different languages. When non-English users do edit a second language edition, that edition is most frequently English. Nonetheless, several regional and linguistic cross-editing patterns are also present.