Do you want to publish a course? Click here

Pilot Study Suggests Online Media Literacy Programming Reduces Belief in False News in Indonesia

122   0   0.0 ( 0 )
 Added by Tim Weninger PhD
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Amidst the threat of digital misinformation, we offer a pilot study regarding the efficacy of an online social media literacy campaign aimed at empowering individuals in Indonesia with skills to help them identify misinformation. We found that users who engaged with our online training materials and educational videos were more likely to identify misinformation than those in our control group (total $N$=1000). Given the promising results of our preliminary study, we plan to expand efforts in this area, and build upon lessons learned from this pilot study.



rate research

Read More

Most of the online news media outlets rely heavily on the revenues generated from the clicks made by their readers, and due to the presence of numerous such outlets, they need to compete with each other for reader attention. To attract the readers to click on an article and subsequently visit the media site, the outlets often come up with catchy headlines accompanying the article links, which lure the readers to click on the link. Such headlines are known as Clickbaits. While these baits may trick the readers into clicking, in the long run, clickbaits usually dont live up to the expectation of the readers, and leave them disappointed. In this work, we attempt to automatically detect clickbaits and then build a browser extension which warns the readers of different media sites about the possibility of being baited by such headlines. The extension also offers each reader an option to block clickbaits she doesnt want to see. Then, using such reader choices, the extension automatically blocks similar clickbaits during her future visits. We run extensive offline and online experiments across multiple media sites and find that the proposed clickbait detection and the personalized blocking approaches perform very well achieving 93% accuracy in detecting and 89% accuracy in blocking clickbaits.
252 - Giancarlo Ruffo 2021
The history of journalism and news diffusion is tightly coupled with the effort to dispel hoaxes, misinformation, propaganda, unverified rumours, poor reporting, and messages containing hate and divisions. With the explosive growth of online social media and billions of individuals engaged with consuming, creating, and sharing news, this ancient problem has surfaced with a renewed intensity threatening our democracies, public health, and news outlets credibility. This has triggered many researchers to develop new methods for studying, understanding, detecting, and preventing fake-news diffusion; as a consequence, thousands of scientific papers have been published in a relatively short period, making researchers of different disciplines to struggle in search of open problems and most relevant trends. The aim of this survey is threefold: first, we want to provide the researchers interested in this multidisciplinary and challenging area with a network-based analysis of the existing literature to assist them with a visual exploration of papers that can be of interest; second, we present a selection of the main results achieved so far adopting the network as an unifying framework to represent and make sense of data, to model diffusion processes, and to evaluate different debunking strategies. Finally, we present an outline of the most relevant research trends focusing on the moving target of fake-news, bots, and trolls identification by means of data mining and text technologies; despite scholars working on computational linguistics and networks traditionally belong to different scientific communities, we expect that forthcoming computational approaches to prevent fake news from polluting the social media must be developed using hybrid and up-to-date methodologies.
In information-rich environments, the competition for users attention leads to a flood of content from which people often find hard to sort out the most relevant and useful pieces. Using Twitter as a case study, we applied an attention economy solution to generate the most informative tweets for its users. By considering the novelty and popularity of tweets as objective measures of their relevance and utility, we used the Huberman-Wu algorithm to automatically select the ones that will receive the most attention in the next time interval. Their predicted popularity was confirmed by using Twitter data collected for a period of 2 months.
Traditional media outlets are known to report political news in a biased way, potentially affecting the political beliefs of the audience and even altering their voting behaviors. Many researchers focus on automatically detecting and identifying media bias in the news, but only very few studies exist that systematically analyze how theses biases can be best visualized and communicated. We create three manually annotated datasets and test varying visualization strategies. The results show no strong effects of becoming aware of the bias of the treatment groups compared to the control group, although a visualization of hand-annotated bias communicated bias instances more effectively than a framing visualization. Showing participants an overview page, which opposes different viewpoints on the same topic, does not yield differences in respondents bias perception. Using a multilevel model, we find that perceived journalist bias is significantly related to perceived political extremeness and impartiality of the article.
142 - Bin Guo , Yasan Ding , Yueheng Sun 2019
The wide spread of fake news in social networks is posing threats to social stability, economic development and political democracy etc. Numerous studies have explored the effective detection approaches of online fake news, while few works study the intrinsic propagation and cognition mechanisms of fake news. Since the development of cognitive science paves a promising way for the prevention of fake news, we present a new research area called Cognition Security (CogSec), which studies the potential impacts of fake news to human cognition, ranging from misperception, untrusted knowledge acquisition, targeted opinion/attitude formation, to biased decision making, and investigates the effective ways for fake news debunking. CogSec is a multidisciplinary research field that leverages knowledge from social science, psychology, cognition science, neuroscience, AI and computer science. We first propose related definitions to characterize CogSec and review the literature history. We further investigate the key research challenges and techniques of CogSec, including human-content cognition mechanism, social influence and opinion diffusion, fake news detection and malicious bot detection. Finally, we summarize the open issues and future research directions, such as early detection of fake news, explainable fake news debunking, social contagion and diffusion models of fake news, and so on.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا