Do you want to publish a course? Click here

Dynamic acousto-mechanical control of a strongly coupled photonic molecule

137   0   0.0 ( 0 )
 Added by Hubert Krenner
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional photonic crystal membranes provide a versatile planar architecture for integrated photonics to control the propagation of light on a chip employing high quality optical cavities, waveguides, beamsplitters or dispersive elements. When combined with highly non-linear quantum emitters, quantum photonic networks operating at the single photon level come within reach. Towards large-scale quantum photonic networks, selective dynamic control of individual components and deterministic interactions between different constituents are of paramount importance. This indeed calls for switching speeds ultimately on the systems native timescales. For example, manipulation via electric fields or all-optical means have been employed for switching in nanophotonic circuits and cavity quantum electrodynamics studies. Here, we demonstrate dynamic control of the coherent interaction between two coupled photonic crystal nanocavities forming a photonic molecule. By using an electrically generated radio frequency surface acoustic wave we achieve optomechanical tuning, demonstrate operating speeds more than three orders of magnitude faster than resonant mechanical approaches. Moreover, the tuning range is large enough to compensate for the inherent fabrication-related cavity mode detuning. Our findings open a route towards nanomechanically gated protocols, which hitherto have inhibited the realization in all-optical schemes.



rate research

Read More

The moire superlattice of misaligned atomic bilayers paves the way for designing a new class of materials with wide tunability. In this work, we propose a photonic analog of the moire superlattice based on dielectric resonator quasi-atoms. In sharp contrast to van der Waals materials with weak interlayer coupling, we realize the strong coupling regime in a moire superlattice, characterized by cascades of robust flat bands at large twist angles. Surprisingly, we find that these flat bands are characterized by a non-trivial band topology, the origin of which is the moire pattern of the resonator arrangement. The physical manifestation of the flat band topology is a robust one-dimensional conducting channel on the edge, protected by the reflection symmetry of the moire superlattice. By explicitly breaking the underlying reflection symmetry on the boundary terminations, we show that the first-order topological edge modes naturally deform into higher-order topological corner modes. Our work pioneers the physics of the moire superlattice beyond the weakly coupled regime and introduces a designable platform to control photonic topological insulator phases using moire patterns.
We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied to a piezo-electric actuator. Using this technique, we demonstrate the ability to tune a quantum dot into resonance with a photonic crystal cavity in the strong coupling regime, resulting in a clear anti-crossing. The bare cavity resonance is less sensitive to strain than the quantum dot and shifts by only 0.078 nm at the maximum applied electric field.
We use the third- and fourth-order autocorrelation functions $g^{(3)}(tau_1,tau_2)$ and $g^{(4)}(tau_1,tau_2, tau_3)$ to detect the non-classical character of the light transmitted through a photonic-crystal nanocavity containing a strongly-coupled quantum dot probed with a train of coherent light pulses. We contrast the value of $g^{(3)}(0, 0)$ with the conventionally used $g^{(2)}(0)$ and demonstrate that in addition to being necessary for detecting two-photon states emitted by a low-intensity source, $g^{(3)}$ provides a more clear indication of the non-classical character of a light source. We also present preliminary data that demonstrates bunching in the fourth-order autocorrelation function $g^{(4)}(tau_1,tau_2, tau_3)$ as the first step toward detecting three-photon states.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the photonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
Photonic crystal membranes (PCM) provide a versatile planar platform for on-chip implementations of photonic quantum circuits. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot (QD) which forms a fundamental building block for elaborate quantum information networks and a cavity quantum electrodynamic (cQED) system controlled by single photons. So far no fast tuning mechanism is available to achieve control within the system coherence time. Here we demonstrate dynamic tuning by monochromatic coherent acoustic phonons formed by a surface acoustic wave (SAW) with frequencies exceeding 1.7 gigahertz, one order of magnitude faster than alternative approaches. We resolve a periodic modulation of the optical mode exceeding eight times its linewidth, preserving both the spatial mode profile and a high quality factor. Since PCMs confine photonic and phononic excitations, coupling optical to acoustic frequencies, our technique opens ways towards coherent acoustic control of optomechanical crystals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا