Do you want to publish a course? Click here

Cavity Quantum Electrodynamics with a Single Quantum Dot Coupled to a Photonic Molecule

153   0   0.0 ( 0 )
 Added by Arka Majumdar
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the photonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.



rate research

Read More

We consider a superconducting microwave cavity capacitively coupled to both a quantum conductor and its electronic reservoirs. We analyze in details how the measurements of the cavity microwave field, which are related to the electronic charge susceptibility, can be used to extract information on the transport properties of the quantum conductor. We show that the asymmetry of the capacitive couplings between the electronic reservoirs and the cavity plays a crucial role in relating optical measurements to transport properties. For asymmetric capacitive couplings, photonic measurements can be used to probe the finite low frequency admittance of the quantum conductor, the real part of which being related to the differential conductance. In particular, when the quantum dot is far from resonance, the charge susceptibility is directly proportional to the admittance for a large range of frequencies and voltages. However, when the quantum conductor is near a resonance, such a relation generally holds only at low frequency and for equal tunnel coupling or low voltage. Beyond this low-energy near equilibrium regime, the charge susceptibility and thus the optical transmission offers new insights on the quantum conductors since the optical observables are not directly connected to transport quantities. For symmetric lead capacitive couplings, we show that the optical measurements can be used to reveal the Korringa-Shiba relation, connecting the reactive to the dissipative part of the susceptibility, at low frequency and low bias.
We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied to a piezo-electric actuator. Using this technique, we demonstrate the ability to tune a quantum dot into resonance with a photonic crystal cavity in the strong coupling regime, resulting in a clear anti-crossing. The bare cavity resonance is less sensitive to strain than the quantum dot and shifts by only 0.078 nm at the maximum applied electric field.
We have realized a hybrid solid-state quantum device in which a single-electron semiconductor double quantum dot is dipole coupled to a superconducting microwave frequency transmission line resonator. The dipolar interaction between the two entities manifests itself via dispersive and dissipative effects observed as frequency shifts and linewidth broadenings of the photonic mode respectively. A Jaynes-Cummings Hamiltonian master equation calculation is used to model the combined system response and allows for determining both the coherence properties of the double quantum dot and its interdot tunnel coupling with high accuracy. The value and uncertainty of the tunnel coupling extracted from the microwave read-out technique are compared to a standard quantum point contact charge detection analysis. The two techniques are found to be consistent with a superior precision for the microwave experiment when tunneling rates approach the resonator eigenfrequency. Decoherence properties of the double dot are further investigated as a function of the number of electrons inside the dots. They are found to be similar in the single-electron and many-electron regimes suggesting that the density of the confinement energy spectrum plays a minor role in the decoherence rate of the system under investigation.
We demonstrate non-perturbative coupling between a single self-assembled InGaAs quantum dot and an external fiber-mirror based microcavity. Our results extend the previous realizations of tunable microcavities while ensuring spatial and spectral overlap between the cavity-mode and the emitter by simultaneously allowing for deterministic charge control of the quantum dots. Using resonant spectroscopy, we show that the coupled quantum dot cavity system is at the onset of strong coupling, with a cooperativity parameter of 2. Our results constitute a milestone towards the realization of a high efficiency solid-state spin-photon interface.
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is used to generate a cavity enhanced optical Stark shift, enabling the QD to be resonantly tuned to the other cavity mode. A twenty-seven fold increase in photon emission from the QD is measured when the off-resonant QD is Stark shifted into the cavity mode resonance, which is attributed to radiative enhancement of the QD. A maximum tuning of 0.06 nm is achieved for the QD at an incident power of 88 {mu}W.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا