Do you want to publish a course? Click here

Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity

217   0   0.0 ( 0 )
 Added by Shuo Sun
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied to a piezo-electric actuator. Using this technique, we demonstrate the ability to tune a quantum dot into resonance with a photonic crystal cavity in the strong coupling regime, resulting in a clear anti-crossing. The bare cavity resonance is less sensitive to strain than the quantum dot and shifts by only 0.078 nm at the maximum applied electric field.



rate research

Read More

We use the third- and fourth-order autocorrelation functions $g^{(3)}(tau_1,tau_2)$ and $g^{(4)}(tau_1,tau_2, tau_3)$ to detect the non-classical character of the light transmitted through a photonic-crystal nanocavity containing a strongly-coupled quantum dot probed with a train of coherent light pulses. We contrast the value of $g^{(3)}(0, 0)$ with the conventionally used $g^{(2)}(0)$ and demonstrate that in addition to being necessary for detecting two-photon states emitted by a low-intensity source, $g^{(3)}$ provides a more clear indication of the non-classical character of a light source. We also present preliminary data that demonstrates bunching in the fourth-order autocorrelation function $g^{(4)}(tau_1,tau_2, tau_3)$ as the first step toward detecting three-photon states.
Systems of photonic crystal cavities coupled to quantum dots are a promising architecture for quantum networking and quantum simulators. The ability to independently tune the frequencies of laterally separated quantum dots is a crucial component of such a scheme. Here, we demonstrate independent tuning of laterally separated quantum dots in photonic crystal cavities coupled by in-plane waveguides by implanting lines of protons which serve to electrically isolate different sections of a diode structure.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the photonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is used to generate a cavity enhanced optical Stark shift, enabling the QD to be resonantly tuned to the other cavity mode. A twenty-seven fold increase in photon emission from the QD is measured when the off-resonant QD is Stark shifted into the cavity mode resonance, which is attributed to radiative enhancement of the QD. A maximum tuning of 0.06 nm is achieved for the QD at an incident power of 88 {mu}W.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا