Do you want to publish a course? Click here

Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering

595   0   0.0 ( 0 )
 Added by Baotian Hu
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.



rate research

Read More

The dependency between an adequate question formulation and correct answer selection is a very intriguing but still underexplored area. In this paper, we show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon and also use it to evaluate robustness of different answer selection approaches. We introduce a simple framework that enables an automated analysis of the conversational question answering (QA) performance using question rewrites, and present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets. Our experiments uncover sensitivity to question formulation of the popular state-of-the-art models for reading comprehension and passage ranking. Our results demonstrate that the reading comprehension model is insensitive to question formulation, while the passage ranking changes dramatically with a little variation in the input question. The benefit of QR is that it allows us to pinpoint and group such cases automatically. We show how to use this methodology to verify whether QA models are really learning the task or just finding shortcuts in the dataset, and better understand the frequent types of error they make.
While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Googles responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmarkT5 models on GooAQ and observe that: (a) in line with recent work, LMs strong performance on GooAQs short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as how and why questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types.
Community-based question answering (CQA) websites represent an important source of information. As a result, the problem of matching the most valuable answers to their corresponding questions has become an increasingly popular research topic. We frame this task as a binary (relevant/irrelevant) classification problem, and present an adversarial training framework to alleviate label imbalance issue. We employ a generative model to iteratively sample a subset of challenging negative samples to fool our classification model. Both models are alternatively optimized using REINFORCE algorithm. The proposed method is completely different from previous ones, where negative samples in training set are directly used or uniformly down-sampled. Further, we propose using Multi-scale Matching which explicitly inspects the correlation between words and ngrams of different levels of granularity. We evaluate the proposed method on SemEval 2016 and SemEval 2017 datasets and achieves state-of-the-art or similar performance.
62 - Zeyu Zhang , Thuy Vu , 2021
This paper studies joint models for selecting correct answer sentences among the top $k$ provided by answer sentence selection (AS2) modules, which are core components of retrieval-based Question Answering (QA) systems. Our work shows that a critical step to effectively exploit an answer set regards modeling the interrelated information between pair of answers. For this purpose, we build a three-way multi-classifier, which decides if an answer supports, refutes, or is neutral with respect to another one. More specifically, our neural architecture integrates a state-of-the-art AS2 model with the multi-classifier, and a joint layer connecting all components. We tested our models on WikiQA, TREC-QA, and a real-world dataset. The results show that our models obtain the new state of the art in AS2.
Answer selection, which is involved in many natural language processing applications such as dialog systems and question answering (QA), is an important yet challenging task in practice, since conventional methods typically suffer from the issues of ignoring diverse real-world background knowledge. In this paper, we extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG). First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network (KNN), which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information. Then, we develop two kinds of knowledge-aware attention mechanism to summarize both the context-based and knowledge-based interactions between questions and answers. To handle the diversity and complexity of KG information, we further propose a Contextualized Knowledge-aware Attentive Neural Network (CKANN), which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network (GCN) and comprehensively learns context-based and knowledge-based sentence representation via the multi-view knowledge-aware attention mechanism. We evaluate our method on four widely-used benchmark QA datasets, including WikiQA, TREC QA, InsuranceQA and Yahoo QA. Results verify the benefits of incorporating external knowledge from KG, and show the robust superiority and extensive applicability of our method.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا