Do you want to publish a course? Click here

Adversarial Training for Community Question Answer Selection Based on Multi-scale Matching

117   0   0.0 ( 0 )
 Added by Xiao Yang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Community-based question answering (CQA) websites represent an important source of information. As a result, the problem of matching the most valuable answers to their corresponding questions has become an increasingly popular research topic. We frame this task as a binary (relevant/irrelevant) classification problem, and present an adversarial training framework to alleviate label imbalance issue. We employ a generative model to iteratively sample a subset of challenging negative samples to fool our classification model. Both models are alternatively optimized using REINFORCE algorithm. The proposed method is completely different from previous ones, where negative samples in training set are directly used or uniformly down-sampled. Further, we propose using Multi-scale Matching which explicitly inspects the correlation between words and ngrams of different levels of granularity. We evaluate the proposed method on SemEval 2016 and SemEval 2017 datasets and achieves state-of-the-art or similar performance.



rate research

Read More

In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.
While numerous methods have been proposed as defenses against adversarial examples in question answering (QA), these techniques are often model specific, require retraining of the model, and give only marginal improvements in performance over vanilla models. In this work, we present a simple model-agnostic approach to this problem that can be applied directly to any QA model without any retraining. Our method employs an explicit answer candidate reranking mechanism that scores candidate answers on the basis of their content overlap with the question before making the final prediction. Combined with a strong base QAmodel, our method outperforms state-of-the-art defense techniques, calling into question how well these techniques are actually doing and strong these adversarial testbeds are.
The dependency between an adequate question formulation and correct answer selection is a very intriguing but still underexplored area. In this paper, we show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon and also use it to evaluate robustness of different answer selection approaches. We introduce a simple framework that enables an automated analysis of the conversational question answering (QA) performance using question rewrites, and present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets. Our experiments uncover sensitivity to question formulation of the popular state-of-the-art models for reading comprehension and passage ranking. Our results demonstrate that the reading comprehension model is insensitive to question formulation, while the passage ranking changes dramatically with a little variation in the input question. The benefit of QR is that it allows us to pinpoint and group such cases automatically. We show how to use this methodology to verify whether QA models are really learning the task or just finding shortcuts in the dataset, and better understand the frequent types of error they make.
In education, open-ended quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.
Short text matching often faces the challenges that there are great word mismatch and expression diversity between the two texts, which would be further aggravated in languages like Chinese where there is no natural space to segment words explicitly. In this paper, we propose a novel lattice based CNN model (LCNs) to utilize multi-granularity information inherent in the word lattice while maintaining strong ability to deal with the introduced noisy information for matching based question answering in Chinese. We conduct extensive experiments on both document based question answering and knowledge based question answering tasks, and experimental results show that the LCNs models can significantly outperform the state-of-the-art matching models and strong baselines by taking advantages of better ability to distill rich but discriminative information from the word lattice input.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا