No Arabic abstract
In this paper, we propose a novel design for molecular communication in which both the transmitter and the receiver have, in a 3-dimensional environment, multiple bulges (in RF communication this corresponds to antenna). The proposed system consists of a fluid medium, information molecules, a transmitter, and a receiver. We simulate the system with a one-shot signal to obtain the channels finite impulse response. We then incorporate this result within our mathematical analysis to determine interference. Molecular communication has a great need for low complexity, hence, the receiver may have incomplete information regarding the system and the channel state. Thus, for the cases of limited information set at the receiver, we propose three detection algorithms, namely adaptive thresholding, practical zero forcing, and Genie-aided zero forcing.
This paper studies spatial diversity techniques applied to multiple-input multiple-output (MIMO) diffusion-based molecular communications (DBMC). Two types of spatial coding techniques, namely Alamouti-type coding and repetition MIMO coding are suggested and analyzed. In addition, we consider receiver-side equal-gain combining, which is equivalent to maximum-ratio combining in symmetrical scenarios. For numerical analysis, the channel impulse responses of a symmetrical $2 times 2$ MIMO-DBMC system are acquired by a trained artificial neural network. It is demonstrated that spatial diversity has the potential to improve the system performance and that repetition MIMO coding outperforms Alamouti-type coding.
In this demonstration, we will present the worlds first molecular multiple-input multiple-output (MIMO) communication link to deliver two data streams in a spatial domain. We show that chemical signals such as concentration gradients could be used in MIMO fashion to transfer sequential data. Until now it was unclear whether MIMO techniques, which are used extensively in modern radio communication, could be applied to molecular communication. In the demonstration, using our devised MIMO apparatus and carefully designed detection algorithm, we will show that we can achieve about 1.7 times higher data rate than single input single output (SISO) molecular communication systems.
In diffusion-based molecular communication, information transport is governed by diffusion through a fluid medium. The achievable data rates for these channels are very low compared to the radio-based communication system, since diffusion can be a slow process. To improve the data rate, a novel multiple-input multiple-output (MIMO) design for molecular communication is proposed that utilizes multiple molecular emitters at the transmitter and multiple molecular detectors at the receiver (in RF communication these all correspond to antennas). Using particle-based simulators, the channels impulse response is obtained and mathematically modeled. These models are then used to determine inter-link interference (ILI) and inter-symbol interference (ISI). It is assumed that when the receiver has incomplete information regarding the system and the channel state, low complexity symbol detection methods are preferred since the receiver is small and simple. Thus four detection algorithms are proposed---adaptive thresholding, practical zero forcing with channel models excluding/including the ILI and ISI, and Genie-aided zero forcing. The proposed algorithms are evaluated extensively using numerical and analytical evaluations.
In diffusion-based communication, as for molecular systems, the achievable data rate is low due to the stochastic nature of diffusion which exhibits a severe inter-symbol-interference (ISI). Multiple-Input Multiple-Output (MIMO) multiplexing improves the data rate at the expense of an inter-link interference (ILI). This paper investigates training-based channel estimation schemes for diffusive MIMO (D-MIMO) systems and corresponding equalization methods. Maximum likelihood and least-squares estimators of mean channel are derived, and the training sequence is designed to minimize the mean square error (MSE). Numerical validations in terms of MSE are compared with Cramer-Rao bound derived herein. Equalization is based on decision feedback equalizer (DFE) structure as this is effective in mitigating diffusive ISI/ILI. Zero-forcing, minimum MSE and least-squares criteria have been paired to DFE, and their performances are evaluated in terms of bit error probability. Since D-MIMO systems are severely affected by the ILI because of short transmitters inter-distance, D-MIMO time interleaving is exploited as countermeasure to mitigate the ILI with remarkable performance improvements. The feasibility of a block-type communication including training and data equalization is explored for D-MIMO, and system-level performances are numerically derived.
Due to high power consumption and difficulties with minimizing the CMOS transistor size, molecular electronics has been introduced as an emerging technology. Further, there have been noticeable advances in fabrication of molecular wires and switches and also molecular diodes can be used for designing different logic circuits. Considering this novel technology, we use molecules as the active components of the circuit, for transporting electric charge. In this paper, a full adder cell based on molecular electronics is presented. This full adder is consisted of resonant tunneling diodes and transistors which are implemented via molecular electronics. The area occupied by this kind of full adder would be much times smaller than the conventional designs and it can be used as the building block of more complex molecular arithmetic circuits.