Do you want to publish a course? Click here

Molecular MIMO: From Theory to Prototype

106   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In diffusion-based molecular communication, information transport is governed by diffusion through a fluid medium. The achievable data rates for these channels are very low compared to the radio-based communication system, since diffusion can be a slow process. To improve the data rate, a novel multiple-input multiple-output (MIMO) design for molecular communication is proposed that utilizes multiple molecular emitters at the transmitter and multiple molecular detectors at the receiver (in RF communication these all correspond to antennas). Using particle-based simulators, the channels impulse response is obtained and mathematically modeled. These models are then used to determine inter-link interference (ILI) and inter-symbol interference (ISI). It is assumed that when the receiver has incomplete information regarding the system and the channel state, low complexity symbol detection methods are preferred since the receiver is small and simple. Thus four detection algorithms are proposed---adaptive thresholding, practical zero forcing with channel models excluding/including the ILI and ISI, and Genie-aided zero forcing. The proposed algorithms are evaluated extensively using numerical and analytical evaluations.



rate research

Read More

In this demonstration, we will present the worlds first molecular multiple-input multiple-output (MIMO) communication link to deliver two data streams in a spatial domain. We show that chemical signals such as concentration gradients could be used in MIMO fashion to transfer sequential data. Until now it was unclear whether MIMO techniques, which are used extensively in modern radio communication, could be applied to molecular communication. In the demonstration, using our devised MIMO apparatus and carefully designed detection algorithm, we will show that we can achieve about 1.7 times higher data rate than single input single output (SISO) molecular communication systems.
In this paper, we propose a novel design for molecular communication in which both the transmitter and the receiver have, in a 3-dimensional environment, multiple bulges (in RF communication this corresponds to antenna). The proposed system consists of a fluid medium, information molecules, a transmitter, and a receiver. We simulate the system with a one-shot signal to obtain the channels finite impulse response. We then incorporate this result within our mathematical analysis to determine interference. Molecular communication has a great need for low complexity, hence, the receiver may have incomplete information regarding the system and the channel state. Thus, for the cases of limited information set at the receiver, we propose three detection algorithms, namely adaptive thresholding, practical zero forcing, and Genie-aided zero forcing.
This paper studies spatial diversity techniques applied to multiple-input multiple-output (MIMO) diffusion-based molecular communications (DBMC). Two types of spatial coding techniques, namely Alamouti-type coding and repetition MIMO coding are suggested and analyzed. In addition, we consider receiver-side equal-gain combining, which is equivalent to maximum-ratio combining in symmetrical scenarios. For numerical analysis, the channel impulse responses of a symmetrical $2 times 2$ MIMO-DBMC system are acquired by a trained artificial neural network. It is demonstrated that spatial diversity has the potential to improve the system performance and that repetition MIMO coding outperforms Alamouti-type coding.
162 - T. Fischer 2016
Featuring low heat dissipation, devices based on spin-wave logic gates promise to comply with increasing future requirements in information processing. In this work, we present the experimental realization of a majority gate based on the interference of spin waves in an Yttrium-Iron-Garnet-based waveguiding structure. This logic device features a three-input combiner with the logic information encoded in the phase of the spin waves. We show that the phase of the output signal represents the majority of the phase of the input signals. A switching time of about 10 ns in the prototype device provides evidence for the ability of sub-nanosecond data processing in future down-scaled devices.
The Internet of Bio-nano Things is a significant development for next generation communication technologies. Because conventional wireless communication technologies face challenges in realizing new applications (e.g., in-body area networks for health monitoring) and necessitate the substitution of information carriers, researchers have shifted their interest to molecular communications (MC). Although remarkable progress has been made in this field over the last decade, advances have been far from acceptable for the achievement of its application objectives. A crucial problem of MC is the low data rate and high error rate inherent in particle dynamics specifications, in contrast to wave-based conventional communications. Therefore, it is important to investigate the resources by which MC can obtain additional information paths and provide strategies to exploit these resources. This study aims to examine techniques involving resource aggregation and exploitation to provide prospective directions for future progress in MC. In particular, we focus on state-of-the-art studies on multiple-input multiple-output (MIMO) systems. We discuss the possible advantages of applying MIMO to various MC system models. Furthermore, we survey various studies that aimed to achieve MIMO gains for the respective models, from theoretical background to prototypes. Finally, we conclude this study by summarizing the challenges that need to be addressed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا