Do you want to publish a course? Click here

Comments on Symmetric Mass Generation in 2d and 4d

107   0   0.0 ( 0 )
 Added by David Tong
 Publication date 2021
  fields Physics
and research's language is English
 Authors David Tong




Ask ChatGPT about the research

Symmetric mass generation is the name given to a mechanism for gapping fermions while preserving a chiral, but necessarily non-anomalous, symmetry. In this paper we describe how symmetric mass generation for continuous symmetries can be achieved using gauge dynamics in two and four dimensions. Various strong coupling effects are invoked, including known properties of supersymmetric gauge theories, specifically the phenomenon of s-confinement, and conjectured properties of non-supersymmetric chiral gauge theories.



rate research

Read More

76 - Gabriel Cuomo 2019
We include vortices in the superfluid EFT for four dimensional CFTs at large global charge. Using the state-operator correspondence, vortices are mapped to charged operators with large spin and we compute their scaling dimensions. Different regimes are identified: phonons, vortex rings, Kelvin waves, and vortex crystals. We also compute correlators with a Noether current insertion in between vortex states. Results for the scaling dimensions of traceless symmetric operators are given in arbitrary spacetime dimensions.
We study $eta$-deformations of principal chiral model (PCM) from the viewpoint of a 4D Chern-Simons (CS) theory. The $eta$-deformed PCM has originally been derived from the 4D CS theory by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824]. The derivation is based on a twist function in the rational description. On the other hand, we start with a twist function in the trigonometric description and discuss possible boundary conditions. We show that a certain boundary condition reproduces the usual $eta$-deformed PCM and another one leads to a new kind of Yang-Baxter deformation.
Yang-Mills instantons are solitonic particles in d=4+1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.
Extensive investigations show that QED$_{3}$ exhibits dynamical fermion mass generation at zero temperature when the fermion flavor $N$ is sufficiently small. However, it seems difficult to extend the theoretical analysis to finite temperature. We study this problem by means of Dyson-Schwinger equation approach after considering the effect of finite temperature or disorder-induced fermion damping. Under the widely used instantaneous approximation, the dynamical mass displays an infrared divergence in both cases. We then adopt a new approximation that includes an energy-dependent gauge boson propagator and obtain results for dynamical fermion mass that do not contain infrared divergence. The validity of the new approximation is examined by comparing to the well-established results obtained at zero temperature.
We study a supersymmetry breaking deformation of the 2d N=(2,2) cigar=Liouville mirror pair, first introduced by Hori and Kapustin. We show that mirror symmetry flows in the infra-red to 2d bosonization, with the theories reducing to massive Thirring and Sine-Gordon respectively. The exact bosonization map emerges at one-loop. We further compactify non-supersymmetric 3d bosonization dualities on a circle and argue that these too flow to 2d bosonization at long distances.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا