This paper presents stability and convergence analysis of a finite volume scheme (FVS) for solving aggregation, breakage and the combined processes by showing Lipschitz continuity of the numerical fluxes. It is shown that the FVS is second order convergent independently of the meshes for pure breakage problem while for pure aggregation and coupled equations, it shows second order convergent on uniform and non-uniform smooth meshes. Furthermore, it gives only first order convergence on non-uniform grids. The mathematical results of convergence analysis are also demonstrated numerically for several test problems.
This paper addresses the three concepts of textit{ consistency, stability and convergence } in the context of compact finite volume schemes for systems of nonlinear hyperbolic conservation laws. The treatment utilizes the framework of balance laws. Such laws express the relevant physical conservation laws in the presence of discontinuities. Finite volume approximations employ this viewpoint, and the present paper can be regarded as being in this category. It is first shown that under very mild conditions a weak solution is indeed a solution to the balance law. The schemes considered here allow the computation of several quantities per mesh cell (e.g., slopes) and the notion of consistency must be extended to this framework. Then a suitable convergence theorem is established, generalizing the classical convergence theorem of Lax and Wendroff. Finally, the limit functions are shown to be entropy solutions by using a notion of Godunov compatibility, which serves as a substitute to the entropy condition.
We present a strategy for solving time-dependent problems on grids with local refinements in time using different time steps in different regions of space. We discuss and analyze two conservative approximations based on finite volume with piecewise constant projections and domain decomposition techniques. Next we present an iterative method for solving the composite-grid system that reduces to solution of standard problems with standard time stepping on the coarse and fine grids. At every step of the algorithm, conservativity is ensured. Finally, numerical results illustrate the accuracy of the proposed methods.
In this paper, we study the numerical approximation of a system of partial dif-ferential equations describing the corrosion of an iron based alloy in a nuclear waste repository. In particular, we are interested in the convergence of a numerical scheme consisting in an implicit Euler scheme in time and a Scharfetter-Gummel finite volume scheme in space.
We are interested in simulating blood flow in arteries with variable elasticity with a one dimensional model. We present a well-balanced finite volume scheme based on the recent developments in shallow water equations context. We thus get a mass conservative scheme which also preserves equilibria of Q=0. This numerical method is tested on analytical tests.
We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On contrary, the proposed scheme is well-balanced: it preserves equilibria of Q = 0. Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.