Do you want to publish a course? Click here

A well-balanced finite volume scheme for blood flow simulation

174   0   0.0 ( 0 )
 Added by Olivier Delestre
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On contrary, the proposed scheme is well-balanced: it preserves equilibria of Q = 0. Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.



rate research

Read More

137 - Olivier Delestre 2011
We are interested in simulating blood flow in arteries with variable elasticity with a one dimensional model. We present a well-balanced finite volume scheme based on the recent developments in shallow water equations context. We thus get a mass conservative scheme which also preserves equilibria of Q=0. This numerical method is tested on analytical tests.
The blood flow model maintains the steady state solutions, in which the flux gradients are non-zero but exactly balanced by the source term. In this paper, we design high order finite difference weighted non-oscillatory (WENO) schemes to this model with such well-balanced property and at the same time keeping genuine high order accuracy. Rigorous theoretical analysis as well as extensive numerical results all indicate that the resulting schemes verify high order accuracy, maintain the well-balanced property, and keep good resolution for smooth and discontinuous solutions.
194 - Olivier Delestre 2012
Overland flow on agricultural fields may have some undesirable effects such as soil erosion, flood and pollutant transport. To better understand this phenomenon and limit its consequences, we developed a code using state-of-the-art numerical methods: FullSWOF (Full Shallow Water equations for Overland Flow), an object oriented code written in C++. It has been made open-source and can be downloaded from http://www.univ-orleans.fr/mapmo/soft/FullSWOF/. The model is based on the classical system of Shallow Water (SW) (or Saint-Venant system). Numerical difficulties come from the numerous dry/wet transitions and the highly-variable topography encountered inside a field. It includes runon and rainfall inputs, infiltration (modified Green-Ampt equation), friction (Darcy-Weisbach and Manning formulas). First we present the numerical method for the resolution of the Shallow Water equations integrated in FullSWOF_2D (the two-dimension version). This method is based on hydrostatic reconstruction scheme, coupled with a semi-implicit friction term treatment. FullSWOF_2D has been previously validated using analytical solutions from the SWASHES library (Shallow Water Analytic Solutions for Hydraulic and Environmental Studies). Finally, FullSWOF_2D is run on a real topography measured on a runoff plot located in Thies (Senegal). Simulation results are compared with measured data. This experimental benchmark demonstrate the capabilities of FullSWOF to simulate adequately overland flow. FullSWOF could also be used for other environmental issues, such as river floods and dam-breaks.
In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete characterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.
194 - Isabelle Faille 2008
We present a strategy for solving time-dependent problems on grids with local refinements in time using different time steps in different regions of space. We discuss and analyze two conservative approximations based on finite volume with piecewise constant projections and domain decomposition techniques. Next we present an iterative method for solving the composite-grid system that reduces to solution of standard problems with standard time stepping on the coarse and fine grids. At every step of the algorithm, conservativity is ensured. Finally, numerical results illustrate the accuracy of the proposed methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا