Do you want to publish a course? Click here

Electrical Detection of Direct and Alternating Spin Current Injected from a Ferromagnetic Insulator into a Ferromagnetic Metal

176   0   0.0 ( 0 )
 Added by Lihui Bai Dr.
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report room temperature electrical detection of spin injection from a ferromagnetic insulator (YIG) into a ferromagnetic metal (Permalloy, Py). Non-equilibrium spins with both static and precessional spin polarizations are dynamically generated by the ferromagnetic resonance of YIG magnetization, and electrically detected by Py as dc and ac spin currents, respectively. The dc spin current is electrically detected via the inverse spin Hall effect of Py, while the ac spin current is converted to a dc voltage via the spin rectification effect of Py which is resonantly enhanced by dynamic exchange interaction between the ac spin current and the Py magnetization. Our results reveal a new path for developing insulator spintronics, which is distinct from the prevalent but controversial approach of using Pt as the spin current detector.



rate research

Read More

62 - G. Schmidt 1999
We have calculated the spin-polarization effects of a current in a two dimensional electron gas which is contacted by two ferromagnetic metals. In the purely diffusive regime, the current may indeed be spin-polarized. However, for a typical device geometry the degree of spin-polarization of the current is limited to less than 0.1%, only. The change in device resistance for parallel and antiparallel magnetization of the contacts is up to quadratically smaller, and will thus be difficult to detect.
The distribution is calculated of the electron spin polarization under current-driven spin injection from a probe to a ferromagnetic film. It is shown that the main parameters determining difference of the spin polarization from the equilibrium value are the current density and the spin polarization of the probe material, while the relation between the probe diameter and the spin diffusion length influences the result very weakly, to a certain extent. A possibility is shown of reaching inverse population of the spin subbands at distances from the probe boundary comparable with the spin diffusion length.
Based on the solution of the stochastic Landau-Lifshitz-Gilbert equation discretized for a ferromagnetic chain subject to a uniform temperature gradient, we present a detailed numerical study of the spin dynamics with a focus particularly on finite-size effects. We calculate and analyze the net longitudinal spin current for various temperature gradients, chain lengths, and external static magnetic fields. In addition, we model an interface formed by a nonuniformly magnetized finite-size ferromagnetic insulator and a normal metal and inspect the effects of enhanced Gilbert damping on the formation of the space-dependent spin current within the chain. A particular aim of this study is the inspection of the spin Seebeck effect beyond the linear response regime. We find that within our model the microscopic mechanism of the spin Seebeck current is the magnon accumulation effect quantified in terms of the exchange spin torque. According to our results, this effect drives the spin Seebeck current even in the absence of a deviation between the magnon and phonon temperature profiles. Our theoretical findings are in line with the recently observed experimental results by M. Agrawal et al., Phys. Rev. Lett. 111, 107204 (2013).
116 - Wentao Hu , Ke Yang , Xuan Wen 2021
Cobaltates have rich spin-states and diverse properties. Using spin-state pictures and firstprinciples calculations, here we study the electronic structure and magnetism of the mixed-valent double perovskite YBaCo2O6. We find that YBaCo2O6 is in the formal intermediate-spin (IS) Co3+/low-spin (LS) Co4+ ground state. The hopping of eg electron from IS-Co3+ to LS-Co4+ via double exchange gives rise to a ferromagnetic half-metallicity, which well accounts for the recent experiments. The reduction of both magnetization and Curie temperature by oxygen vacancies is discussed, aided with Monte Carlo simulations. We also explore several other possible spin-states and their interesting electronic/magnetic properties. Moreover, we predict that a volume expansion more than 3% would tune YBaCo2O6 into the high-spin (HS) Co3+/LS Co4+ ferromagnetic state and simultaneously drive a metal-insulator transition. Therefore, spin-states are a useful parameter for tuning the material properties of cobaltates.
We report large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet(AF)/yttrium iron garnet(YIG), where a thin AF insulating layer of NiO or CoO can enhance spin current from YIG to a NM by up to a factor of 10. The spin current enhancement in NM/AF/YIG, with a pronounced maximum near the Neel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM/YIG interface for NM = 3d, 4d, and 5d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا