No Arabic abstract
We report large enhancement of thermally injected spin current in normal metal (NM)/antiferromagnet(AF)/yttrium iron garnet(YIG), where a thin AF insulating layer of NiO or CoO can enhance spin current from YIG to a NM by up to a factor of 10. The spin current enhancement in NM/AF/YIG, with a pronounced maximum near the Neel temperature of the thin AF layer, has been found to scale linearly with the spin-mixing conductance at the NM/YIG interface for NM = 3d, 4d, and 5d metals. Calculations of spin current enhancement and spin mixing conductance are qualitatively consistent with the experimental results.
Spin Hall magnetoresistance (SMR) has been observed in Pt/NiO/Y3Fe5O12 (YIG) heterostructures with characteristics very different from those in Pt/YIG. We show that the SMR in Pt/NiO/YIG strongly correlates with spin conductance, both sharing very strong temperature dependence due to antiferromagnetic magnons and spin fluctuation. This phenomenon indicates that spin current generated by spin Hall effect in the Pt transmits through the insulating NiO and is reflected from the NiO/YIG interface. Inverted SMR has been observed below a temperature which increases with the NiO thickness, suggesting spin-flip reflection from the antiferromagnetic NiO exchange coupled with the YIG.
Spin Hall effect, an electric generation of spin current, allows for efficient control of magnetization. Recent theory revealed that orbital Hall effect creates orbital current, which can be much larger than spin Hall-induced spin current. However, orbital current cannot directly exert a torque on a ferromagnet, requiring a conversion process from orbital current to spin current. Here, we report two effective methods of the conversion through spin-orbit coupling engineering, which allows us to unambiguously demonstrate orbital-current-induced spin torque, or orbital Hall torque. We find that orbital Hall torque is greatly enhanced by introducing either a rare-earth ferromagnet Gd or a Pt interfacial layer with strong spin-orbit coupling in Cr/ferromagnet structures, indicating that the orbital current generated in Cr is efficiently converted into spin current in the Gd or Pt layer. Furthermore, we show that the orbital Hall torque can facilitate the reduction of switching current of perpendicular magnetization in spin-orbit-torque-based spintronic devices.
A magnon Nernst effect, an antiferromagnetic analogue of the magnon Hall effect in ferromagnetic insulators, has been studied experimentally for a layered antiferromagnetic insulator MnPS3 in contact with two Pt strips. Thermoelectric voltage in the Pt strips grown on MnPS3 single crystals exhibits non-monotonic temperature dependence at low temperatures, which cannot be explained by electronic origins in Pt but can be ascribed to the inverse spin Hall voltage induced by a magnon Nernst effect. Control of antiferromagnetic domains in the MnPS3 crystal by magnetoelectric cooling is found to modulate the low-temperature thermoelectric voltage in Pt, which corroborates the emergence of the magnon Nernst effect in Pt|MnPS3 hybrid structures.
We theoretically investigate domain wall motion in an antiferromagnetic insulator layer caused by thermally generated spin currents in an adjacent spin-split superconductor layer. An uncompensated antiferromagnet interface enables the two crucial ingredients underlying the mechanism - spin splitting in the superconductor and absorption of spin currents by the antiferromagnet. Treating the superconductor using the quasiclassical theory and the antiferromagnet via Landau-Lifshitz-Gilbert description, we find domain wall propagation along the thermal gradient with relatively large velocities $sim 100$ m/s. Our proposal exploits the giant thermal response of spin-split superconductors in achieving large spin torques towards driving domain wall and other spin textures in antiferromagnets.
We propose a new type of spin-valley locking (SVL), named $textit{C}$-paired SVL, in antiferromagnetic systems, which directly connects the spin/valley space with the real space, and hence enables both static and dynamical controls of spin and valley to realize a multifunctional antiferromagnetic material. The new emergent quantum degree of freedom in the $textit{C}$-paired SVL is comprised of spin-polarized valleys related by a crystal symmetry instead of the time-reversal symmetry. Thus, both spin and valley can be accessed by simply breaking the corresponding crystal symmetry. Typically, one can use a strain field to induce a large net valley polarization/magnetization and use a charge current to generate a large noncollinear spin current. We predict the realization of the $textit{C}$-paired SVL in monolayer V$_2$Se$_2$O, which indeed exhibits giant piezomagnetism and can generate a large transverse spin current. Our findings provide unprecedented opportunities to integrate various controls of spin and valley with nonvolatile information storage in a single material, which is highly desirable for versatile fundamental research and device applications.