Do you want to publish a course? Click here

Electron Sources for Future Lightsources, Summary and Conclusions for the Activities during FLS 2012

126   0   0.0 ( 0 )
 Added by Thorsten Kamps
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper summarizes the discussions, presentations, and activity of the Future Light Sources Workshop 2012 (FLS 2012) working group dedicated to Electron Sources. The focus of the working group was to discuss concepts and technologies that might enable much higher peak and average brightness from electron beam sources. Furthermore the working group was asked to consider methods to greatly improve the robustness of operation and lower the costs of providing electrons.



rate research

Read More

The Energy Recovery Linac (ERL) paradigm offers the promise to generate intense electron beams of superior quality with extremely small six-dimensional phase space for many applications in the physical sciences, materials science, chemistry, health, information technology and security. Helmholtz-Zentrum Berlin started in 2010 an intensive R&D programme to address the challenges related to the ERL as driver for future light sources by setting up the bERLinPro (Berlin ERL Project) ERL with 50 MeV beam energy and high average current. The project is close to reach its major milestone in 2020, acceleration and recovery of a high brightness electron beam. The goal of bERLinProCamp 2019 was to discuss scientific opportunities for bERLinPro 2020+. bERLinProCamp 2019 was held on Tue, 17.09.2019 at Helmholtz-Zentrum Berlin, Berlin, Germany. This paper summarizes the main themes and output of the workshop.
Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.
On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future linear colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities.
78 - J.E. Clendenin 2000
Recent advances in electron and positron sources have resulted in new capabilities driven in most cases by the increasing demands of advanced accelerating systems. Electron sources for brighter beams and for high average-current beams are described. The status and remaining challenges for polarized electron beams are also discussed. For positron sources, recent activity in the development of polarized positron beams for future colliders is reviewed. Finally, a new proposal for combining laser cooling with beam polarization is presented.
The Frascati F-Factory DAFNE has been delivering luminosity to the KLOE, DEAR and FINUDA experiments since year 2000. Since April 2004 the KLOE run has been resumed and recently peak luminosity of 1.0x1032 cm-2s-1 and integrated luminosity of 6.2 pb-1/day have been achieved. The scientific program of the three high-energy experiments sharing DAFNE operation will be completed approximately by the end of year 2006. A scientific program for DAFNE beyond that date has not been defined yet and it is matter of discussion in the high-energy physics and accelerator physics communities. In this paper we present some future scenarios for DAFNE, discussing the expected ultimate performances of the machine as it is now and addressing the design for an energy and/or luminosity upgrade. The options presented in the following are not exhaustive and they are intended to give a glance of what is doable using the existing infrastructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا