Do you want to publish a course? Click here

Recent Advances in Electron and Positron Sources

79   0   0.0 ( 0 )
 Added by J. E. Clendenin
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent advances in electron and positron sources have resulted in new capabilities driven in most cases by the increasing demands of advanced accelerating systems. Electron sources for brighter beams and for high average-current beams are described. The status and remaining challenges for polarized electron beams are also discussed. For positron sources, recent activity in the development of polarized positron beams for future colliders is reviewed. Finally, a new proposal for combining laser cooling with beam polarization is presented.



rate research

Read More

136 - Mikhail Zobov 2011
In 2010 we celebrated 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called factories. However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAFNE, the Italian PHi-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.
The review of using of compton backscattering method for determination of the beam energy in collider experiments is given.
63 - E. Voutier 2017
The Polarized Electrons for Polarized Positrons (PEPPo) experiment has demonstrated the efficient transfer of polarization from electrons to positrons produced by the bremsstrahlung radiation of a polarized electron beam in a high-$Z$ target. Positron polarization up to 82% has been measured for an initial electron beam momentum of 8.19 MeV/$c$, limited only by the electron beam polarization. Combined with the high intensity and high polarization performances of polarized electron sources, this technique extends efficient polarized positron capabilities from GeV to MeV electron accelerators. This presentation reviews the PEPPo proof-of-principle experiment and addresses the perspectives for future applications.
144 - C.M. Bhat , P.C. Bhat , W. Chou 2013
The discovery of a Higgs-like boson with mass near 126 GeV, at the LHC, has reignited interest in future energy frontier colliders. We propose here a proton-proton (pp) collider in a 100 km ring, with center of mass (CM) energy of ~100 TeV which would have substantial discovery potential for new heavy particles and new physics beyond the Standard Model. In the case that LHC experiments have already found exotic resonances or heavy partner particles, this collider could fill out the tower of resonances (thus e.g. confirming an extra dimension) or the full suite of partner particles (e.g. for supersymmetry). The high luminosity of the new collider would enable unique precision studies of the Higgs boson (including Higgs self coupling and rare Higgs decays), and its higher energy would allow more complete measurements of vector boson scattering to help elucidate electroweak symmetry breaking. We also discuss an e+e- collider in the same 100 km ring with CM energies from 90 to 350 GeV. This collider would enable precision electroweak measurements up to the ttbar threshold, and serve as a Higgs factory.
Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا