We show that the Snake on a square $SC(S^1)$ is homotopy equivalent to the space $AC(S^1)$ which was investigated in the previous work by Eda, Karimov and Repovvs. We also introduce related constructions $CSC(-)$ and $CAC(-)$ and investigate homotopical differences between these four constructions. Finally, we explicitly describe the second homology group of the Hawaiian tori wedge.
Using the mapping cone of a rational surgery, we give several obstructions for Seifert fibered surgeries, including obstructions on the Alexander polynomial, the knot Floer homology, the surgery coefficient and the Seifert and four-ball genus of the knot.
We investigate the classical Alexandroff-Borsuk problem in the category of non-triangulable manifolds: Given an $n$-dimensional compact non-triangulable manifold $M^n$ and $varepsilon > 0$, does there exist an $varepsilon$-map of $M^n$ onto an $n$-dimensional finite polyhedron which induces a homotopy equivalence?
We calculate the singular homology and v{C}ech cohomology groups of the Harmonic archipelago. As a corollary, we prove that this space is not homotopy equivalent to the Griffiths space. This is interesting in view of Edas proof that the first singular homology groups of these spaces are isomorphic.
A subject of recent interest in inverse problems is whether a corner must diffract fixed frequency waves. We generalize this question somewhat and study cones $[0,infty)times Y$ which do not diffract high frequency waves. We prove that if $Y$ is analytic and does not diffract waves at high frequency then every geodesic on $Y$ is closed with period $2pi$. Moreover, we show that if $dim Y=2$, then $Y$ is isometric to either the sphere of radius 1 or its $mathbb{Z}^2$ quotient, $mathbb{R}mathbb{P}^2$.
The purpose of this note is to discuss how various Sobolev spaces defined on multiple cones behave with respect to density of smooth functions, interpolation and extension/restriction to/from $RR^n$. The analysis interestingly combines use of Poincare inequalities and of some Hardy type inequalities.