Do you want to publish a course? Click here

On the homology of the Harmonic Archipelago

153   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the singular homology and v{C}ech cohomology groups of the Harmonic archipelago. As a corollary, we prove that this space is not homotopy equivalent to the Griffiths space. This is interesting in view of Edas proof that the first singular homology groups of these spaces are isomorphic.



rate research

Read More

We investigate the classical Alexandroff-Borsuk problem in the category of non-triangulable manifolds: Given an $n$-dimensional compact non-triangulable manifold $M^n$ and $varepsilon > 0$, does there exist an $varepsilon$-map of $M^n$ onto an $n$-dimensional finite polyhedron which induces a homotopy equivalence?
We prove new vanishing results on the growth of higher torsion homologies for suitable arithmetic lattices, Artin groups and mapping class groups. The growth is understood along Farber sequences, in particular, along residual chains. For principal congruence subgroups, we also obtain strong asymptotic bounds for the torsion growth. As a central tool, we introduce a quantitative homotopical method called effective rebuilding. This constructs small classifying spaces of finite index subgroups, at the same time controlling the complexity of the homotopy. The method easily applies to free abelian groups and then extends recursively to a wide class of residually finite groups.
Given a Coxeter system (W,S), there is an associated CW-complex, Sigma, on which W acts properly and cocompactly. We prove that when the nerve L of (W,S) is a flag triangulation of the 3-sphere, then the reduced $ell^2$-homology of Sigma vanishes in all but the middle dimension.
We show that the Snake on a square $SC(S^1)$ is homotopy equivalent to the space $AC(S^1)$ which was investigated in the previous work by Eda, Karimov and Repovvs. We also introduce related constructions $CSC(-)$ and $CAC(-)$ and investigate homotopical differences between these four constructions. Finally, we explicitly describe the second homology group of the Hawaiian tori wedge.
164 - Eaman Eftekhary 2013
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا