Do you want to publish a course? Click here

On non-diffractive cones

74   0   0.0 ( 0 )
 Added by Jared Wunsch
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A subject of recent interest in inverse problems is whether a corner must diffract fixed frequency waves. We generalize this question somewhat and study cones $[0,infty)times Y$ which do not diffract high frequency waves. We prove that if $Y$ is analytic and does not diffract waves at high frequency then every geodesic on $Y$ is closed with period $2pi$. Moreover, we show that if $dim Y=2$, then $Y$ is isometric to either the sphere of radius 1 or its $mathbb{Z}^2$ quotient, $mathbb{R}mathbb{P}^2$.



rate research

Read More

We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspace of the link manifold satisfies a weighted $L^1to L^infty$ dispersive estimate. In odd dimensions, the decay rate we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension, but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of $t^{1/2}$ compared to the sharp Euclidean estimate.
We are concerned with the structural stability of conical shocks in the three-dimensional steady supersonic flows past Lipschitz perturbed cones whose vertex angles are less than the critical angle. The flows under consideration are governed by the steady isothermal Euler equations for potential flow with axisymmetry so that the equations contain a singular geometric source term. We first formulate the shock stability problem as an initial-boundary value problem with the leading conical shock-front as a free boundary, and then establish the existence and asymptotic behavior of global entropy solutions of bounded variation (BV) of the problem. To achieve this, we first develop a modified Glimm scheme to construct approximate solutions via self-similar solutions as building blocks in order to incorporate with the geometric source term. Then we introduce the Glimm-type functional, based on the local interaction estimates between weak waves, the strong leading conical shock, and self-similar solutions, as well as the estimates of the center changes of the self-similar solutions. To make sure the decreasing of the Glimm-type functional, we choose appropriate weights by careful asymptotic analysis of the reflection coefficients in the interaction estimates, when the Mach number of the incoming flow is sufficiently large. Finally, we establish the existence of global entropy solutions involving a strong leading conical shock-front, besides weak waves, under the conditions that the Mach number of the incoming flow is sufficiently large and the weighted total variation of the slopes of the generating curve of the Lipschitz perturbed cone is sufficiently small. Furthermore, the entropy solution is shown to approach asymptotically the self-similar solution that is determined by the incoming flow and the asymptotic tangent of the cone boundary at infinity.
204 - G. Austin Ford 2009
We study the Schrodinger equation on a flat euclidean cone $mathbb{R}_+ times mathbb{S}^1_rho$ of cross-sectional radius $rho > 0$, developing asymptotics for the fundamental solution both in the regime near the cone point and at radial infinity. These asymptotic expansions remain uniform while approaching the intersection of the geometric front, the part of the solution coming from formal application of the method of images, and the diffractive front emerging from the cone tip. As an application, we prove Strichartz estimates for the Schrodinger propagator on this class of cones.
Fluid flow in pipes with discontinuous cross section or with kinks is described through balance laws with a non conservative product in the source. At jump discontinuities in the pipes geometry, the physics of the problem suggests how to single out a solution. On this basis, we present a definition of solution for a general BV geometry and prove an existence result, consistent with a limiting procedure from piecewise constant geometries. In the case of a smoothly curved pipe we thus justify the appearance of the curvature in the source term of the linear momentum equation. These results are obtained as consequences of a general existence result devoted to abstract balance laws with non conservative source terms.
We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from the theory of free boundary problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا