Do you want to publish a course? Click here

The dependence of topological Anderson insulator on the type of disorder

173   0   0.0 ( 0 )
 Added by Juntao Song
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper details the investigation of the influence of different disorders in two-dimensional topological insulator systems. Unlike the phase transitions to topological Anderson insulator induced by normal Anderson disorder, a different physical picture arises when bond disorder is considered. Using Born approximation theory, an explanation is given as to why bond disorder plays a different role in phase transition than does Anderson disorder. By comparing phase diagrams, conductance, conductance fluctuations, and the localization length for systems with different types of disorder, a consistent conclusion is obtained. The results indicate that a topological Anderson insulator is dependent on the type of disorder. These results are important for the doping processes used in preparation of topological insulators.



rate research

Read More

The effect of surface disorder on electronic systems is particularly interesting for topological phases with surface and edge states. Using exact diagonalization, it has been demonstrated that the surface states of a 3D topological insulator survive strong surface disorder, and simply get pushed to a clean part of the bulk. Here we explore a new method which analytically eliminates the clean bulk, and reduces a $D$-dimensional problem to a Hamiltonian-diagonalization problem within the $(D-1)$-dimensional disordered surface. This dramatic reduction in complexity allows the analysis of significantly bigger systems than is possible with exact diagonalization. We use our method to analyze a 2D topological spin-Hall insulator with non-magnetic and magnetic edge impurities, and we calculate the probability density (or local density of states) of the zero-energy eigenstates as a function of edge-parallel momentum and layer index. Our analysis reveals that the system size needed to reach behavior in the thermodynamic limit increases with disorder. We also compute the edge conductance as a function of disorder strength, and chart a lower bound for the length scale marking the crossover to the thermodynamic limit.
The realization of the quantum anomalous Hall (QAH) effect without magnetic doping attracts intensive interest since magnetically doped topological insulators usually possess inhomogeneity of ferromagnetic order. Here, we propose a different strategy to realize intriguing QAH states arising from the interplay of light and non-magnetic disorder in two-dimensional topologically trivial systems. By combining the Born approximation and Floquet theory, we show that a time-reversal invariant disorder-induced topological insulator, known as the topological Anderson insulator (TAI), would evolve into a time-reversal broken TAI and then into a QAH insulator by shining circularly polarized light. We utilize spin and charge Hall conductivities, which can be measured in experiments directly, to distinguish these three different topological phases. This work not only offers an exciting opportunity to realize the high-temperature QAH effect without magnetic orders, but also is important for applications of topological states to spintronics.
Although topological Anderson insulator has been predicted in 2009, the lasting investigations of this disorder established nontrivial state results in only two experimental observations in cold atoms [Science, {bf 362 },929 (2018)] and in photonic crystals [Nature, {bf 560}, 461 (2018)] recently. In this paper, we study the topological Anderson transition in electric circuits. By arranging capacitor and inductor network, we construct a disordered Haldane model. Specially, the disorder is introduced by the grounding inductors with random inductance. Based on non-commutative geometry method and transport calculation, we confirm that the disorder in circuits can drive a transition from normal insulator to topological Anderson insulator. We also find the random inductance induced disorder possessing unique characters rather than Anderson disorder, therefore it leads to distinguishable features of topological Anderson transition in circuits. Different from other systems, the topological Anderson insulator in circuits can be detected by measuring the corresponding quantized transmission coefficient and edge state wavefunction due to mature microelectronic technology.
It has been proposed that disorder may lead to a new type of topological insulator, called topological Anderson insulator (TAI). Here we examine the physical origin of this phenomenon. We calculate the topological invariants and density of states of disordered model in a super-cell of 2-dimensional HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a band touching as the disorder strength increases. The TAI is protected by a mobility gap, in contrast to the band gap in conventional quantum spin Hall systems. The mobility gap in the TAI consists of a cluster of non-trivial subgaps separated by almost flat and localized bands.
Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as Anderson localization and arrests diffusion of classical particles in disordered potentials. In time-periodic Floquet lattices, exponential localization in a periodically driven quantum system similarly arrests diffusion of its classically chaotic counterpart in the action-angle space. Here we demonstrate that nonlinear optical response allows for clear detection of the disorder-induced phase transition between delocalized and localized states. The optical signature of the transition is the emergence of symmetry-forbidden even-order harmonics: these harmonics are enabled by Anderson-type localization and arise for sufficiently strong disorder even when the overall charge distribution in the field-free system spatially symmetric. The ratio of even to odd harmonic intensities as a function of disorder maps out the phase transition even when the associated changes in the band structure are negligibly small.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا