Do you want to publish a course? Click here

High harmonic spectroscopy of disorder-induced Anderson localization

75   0   0.0 ( 0 )
 Added by Gopal Dixit dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exponential localization of wavefunctions in lattices, whether in real or synthetic dimensions, is a fundamental wave interference phenomenon. Localization of Bloch-type functions in space-periodic lattice, triggered by spatial disorder, is known as Anderson localization and arrests diffusion of classical particles in disordered potentials. In time-periodic Floquet lattices, exponential localization in a periodically driven quantum system similarly arrests diffusion of its classically chaotic counterpart in the action-angle space. Here we demonstrate that nonlinear optical response allows for clear detection of the disorder-induced phase transition between delocalized and localized states. The optical signature of the transition is the emergence of symmetry-forbidden even-order harmonics: these harmonics are enabled by Anderson-type localization and arise for sufficiently strong disorder even when the overall charge distribution in the field-free system spatially symmetric. The ratio of even to odd harmonic intensities as a function of disorder maps out the phase transition even when the associated changes in the band structure are negligibly small.



rate research

Read More

178 - L. Ujfalusi , I. Varga 2012
The localization of one-electron states in the large (but finite) disorder limit is investigated. The inverse participation number shows a non--monotonic behavior as a function of energy owing to anomalous behavior of few-site localization. The two-site approximation is solved analytically and shown to capture the essential features found in numerical simulations on one-, two- and three-dimensional systems. Further improvement has been obtained by solving a three-site model.
160 - Alon Beck , Moshe Goldstein 2020
The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered to drive the system into a nontrivial quantum coherent steady state? In this work we shed light on this issue by studying the effect of disorder on recently-introduced dissipation-induced Chern topological states, and examining the eigenmodes of the Hermitian steady state density matrix or entanglement Hamiltonian. We find that, similarly to equilibrium, each Landau band has a single delocalized level near its center. However, using three different finite size scaling methods we show that the critical exponent $ u$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics. This indicates a different type of nonequilibrium quantum critical universality class accessible in cold-atom experiments.
We evaluate the localization length of the wave (or Schroedinger) equation in the presence of a disordered speckle potential. This is relevant for experiments on cold atoms in optical speckle potentials. We focus on the limit of large disorder, where the Born approximation breaks down and derive an expression valid in the quasi-metallic phase at large disorder. This phase becomes strongly localized and the effective mobility edge disappears.
Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for disordered quantum many-body systems with results for 3D and 5D Anderson models, we argue that the two-parameter scaling breaks down in the vicinity of the transition to the localized phase signalling subdiffusive dynamics.
129 - Marie Piraud 2011
We study quantum transport in anisotropic 3D disorder and show that non rotation invariant correlations can induce rich diffusion and localization properties. For instance, structured finite-range correlations can lead to the inversion of the transport anisotropy. Moreover, working beyond the self-consistent theory of localization, we include the disorder-induced shift of the energy states and show that it strongly affects the mobility edge. Implications to recent experiments are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا