Do you want to publish a course? Click here

Low temperature investigations of single silicon vacancy colour centres in diamond

148   0   0.0 ( 0 )
 Added by Elke Neu Dr.
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study single silicon vacancy (SiV) centres in chemical vapour deposition (CVD) nanodiamonds on iridium as well as an ensemble of SiV centres in a high quality, low stress CVD diamond film by using temperature dependent luminescence spectroscopy in the temperature range 5-295 K. We investigate in detail the temperature dependent fine structure of the zero-phonon-line (ZPL) of the SiV centres. The ZPL transition is affected by inhomogeneous as well as temperature dependent homogeneous broadening and blue shifts by about 20 cm-1 upon cooling from room temperature to 5 K. We employ excitation power dependent g(2) measurements to explore the temperature dependent internal population dynamics of single SiV centres and infer almost temperature independent dynamics.



rate research

Read More

The recently discovered negatively charged tin-vacancy centre in diamond is a promising candidate for applications in quantum information processing (QIP). We here present a detailed spectroscopic study encompassing single photon emission and polarisation properties, the temperature dependence of emission spectra as well as a detailed analysis of the phonon sideband and Debye-Waller factor. Using photoluminescence excitation spectroscopy (PLE) we probe an energetically higher lying excited state and prove fully lifetime limited linewidths of single emitters at cryogenic temperatures. For these emitters we also investigate the stability of the charge state under resonant excitation. These results provide a detailed insight into the spectroscopic properties of the $text{SnV}^-$ centre and lay the foundation for further studies regarding its suitability in QIP.
We characterize a high-density sample of negatively charged silicon-vacancy (SiV$^-$) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of ce{SiV^-} centers that is not typically observed in photoluminescence, and which exhibits significant spectral inhomogeneity and extended electronic $T_2$ times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices.
The silicon-vacancy ($mathrm{SiV}^-$) color center in diamond has attracted attention due to its unique optical properties. It exhibits spectral stability and indistinguishability that facilitate efficient generation of photons capable of demonstrating quantum interference. Here we show high fidelity optical initialization and readout of electronic spin in a single $mathrm{SiV}^-$ center with a spin relaxation time of $T_1=2.4pm0.2$ ms. Coherent population trapping (CPT) is used to demonstrate coherent preparation of dark superposition states with a spin coherence time of $T_2^star=35pm3$ ns. This is fundamentally limited by orbital relaxation, and an understanding of this process opens the way to extend coherences by engineering interactions with phonons. These results establish the $mathrm{SiV}^-$ center as a solid-state spin-photon interface.
Optically interfaced spins in the solid promise scalable quantum networks. Robust and reliable optical properties have so far been restricted to systems with inversion symmetry. Here, we release this stringent constraint by demonstrating outstanding optical and spin properties of single silicon vacancy centres in silicon carbide. Despite the lack of inversion symmetry, the systems particular wave function symmetry decouples its optical properties from magnetic and electric fields, as well as from local strain. This provides a high-fidelity spin-to-photon interface with exceptionally stable and narrow optical transitions, low inhomogeneous broadening, and a large fraction of resonantly emitted photons. Further, the weak spin-phonon coupling results in electron spin coherence times comparable with nitrogen-vacancy centres in diamond. This allows us to demonstrate coherent hyperfine coupling to single nuclear spins, which can be exploited as qubit memories. Our findings promise quantum network applications using integrated semiconductor-based spin-to-photon interfaces.
We investigate phonon induced electronic dynamics in the ground and excited states of the negatively charged silicon-vacancy ($mathrm{SiV}^-$) centre in diamond. Optical transition line widths, transition wavelength and excited state lifetimes are measured for the temperature range 4-350 K. The ground state orbital relaxation rates are measured using time-resolved fluorescence techniques. A microscopic model of the thermal broadening in the excited and ground states of the $mathrm{SiV}^-$ centre is developed. A vibronic process involving single-phonon transitions is found to determine orbital relaxation rates for both the ground and the excited states at cryogenic temperatures. We discuss the implications of our findings for coherence of qubit states in the ground states and propose methods to extend coherence times of $mathrm{SiV}^-$ qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا