Do you want to publish a course? Click here

A photonic transistor device based on photons and phonons in a cavity electromechanical system

116   0   0.0 ( 0 )
 Added by Cheng Jiang
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a scheme for photonic transistors based on photons and phonons in a cavity electromechanical system, which is consisted of a superconducting microwave cavity coupled to a nanomechanical resonator. Control of the propagation of photons is achieved through the interaction of microwave field (photons) and nanomechanical vibrations (phonons). By calculating the transmission spectrum of the signal field, we show that the signal field can be efficiently attenuated or amplified, depending on the power of a second `gating(pump) field. This scheme may be a promising candidate for single-photon transistors and pave the way for numerous applications in telecommunication and quantum information technologies.



rate research

Read More

We implement a cavity opto-electromechanical system integrating electrical actuation capabilities of nanoelectromechanical devices with ultrasensitive mechanical transduction achieved via intra-cavity optomechanical coupling. Electrical gradient forces as large as 0.40 microN are realized, with simultaneous mechanical transduction sensitivity of 1.5 X 10^-18 m/rtHz representing a three orders of magnitude improvement over any nanoelectromechanical system to date. Opto-electromechanical feedback cooling is demonstrated, exhibiting strong squashing of the in-loop transduction signal. Out-of-loop transduction provides accurate temperature calibration even in the critical paradigm where measurement backaction induces opto-mechanical correlations.
252 - K. H. Madsen , S. Ates , J. Liu 2014
We demonstrate a single-photon collection efficiency of $(44.3pm2.1)%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4pm5)%$ recorded above the saturation power. The high efficiency is directly confirmed by detecting up to $962pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching $0.77pm0.19$ ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.
Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial to fundamental tests of quantum physics and realizations of quantum networks. Here we report non-classical correlations between single photons and phonons -- the quanta of mechanical motion -- from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photonphonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light-matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena as well as applications in quantum communication, as quantum memories and as quantum transducers.
65 - Jie Li , Shi-Yao Zhu , 2018
We show how to create quantum squeezed states of magnons and phonons in a cavity magnomechanical system. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagnet, and couple to cavity microwave photons and phonons (vibrational modes of the ferrimagnet) via the magnetic dipole interaction and magnetostrictive interaction, respectively. The cavity is driven by a weak squeezed vacuum field generated by a flux-driven Josephson parametric amplifier, which is essential to get squeezed states of the magnons and phonons. We show that the magnons can be prepared in a squeezed state via the cavity-magnon beamsplitter interaction, and by further driving the magnon mode with a strong red-detuned microwave field, the phonons are squeezed. We show optimal parameter regimes for obtaining large squeezing of the magnons and phonons, which are robust against temperature and could be realized with experimentally reachable parameters.
Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا