No Arabic abstract
Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial to fundamental tests of quantum physics and realizations of quantum networks. Here we report non-classical correlations between single photons and phonons -- the quanta of mechanical motion -- from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photonphonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light-matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena as well as applications in quantum communication, as quantum memories and as quantum transducers.
Quantum optics - the creation, manipulation and detection of non-classical states of light - is a fundamental cornerstone of modern physics, with many applications in basic and applied science. Achieving the same level of control over phonons, the quanta of vibrations, could have a similar impact, in particular on the fields of quantum sensing and quantum information processing. Here we demonstrate the first step towards this level of control and realize a single-mode waveguide for individual phonons in a suspended silicon micro-structure. We use a cavity-waveguide architecture, where the cavity is used as a source and detector for the mechanical excitations, while the waveguide has a free standing end in order to reflect the phonons. This enables us to observe multiple round-trips of the phonons between the source and the reflector. The long mechanical lifetime of almost 100 $mu s$ demonstrates the possibility of nearly lossless transmission of single phonons over, in principle, tens of centimeters. Our experiment represents the first demonstration of full on-chip control over traveling single phonons strongly confined in the directions transverse to the propagation axis and paves the way to a time-encoded multimode quantum memory at telecom wavelength and advanced quantum acoustics experiments.
Quantum optical measurement techniques offer a rich avenue for quantum control of mechanical oscillators via cavity optomechanics. In particular, a powerful yet little explored combination utilizes optical measurements to perform heralded non-Gaussian mechanical state preparation and to determine the mechanical phase-space distribution. Here, we experimentally perform heralded single- and multi-phonon subtraction via photon counting to a room temperature mechanical thermal state with a Brillouin optomechanical system, and use optical heterodyne detection to measure the $s$-parameterized Wigner phase-space distribution of the non-Gaussian mechanical states generated. The techniques developed here will be useful for a broad range of both applied and fundamental studies that exploit quantum-state engineering and reconstruction of mechanical motional states.
We provide an argument to infer stationary entanglement between light and a mechanical oscillator based on continuous measurement of light only. We propose an experimentally realizable scheme involving an optomechanical cavity driven by a resonant, continuous-wave field operating in the non-sideband-resolved regime. This corresponds to the conventional configuration of an optomechanical position or force sensor. We show analytically that entanglement between the mechanical oscillator and the output field of the optomechanical cavity can be inferred from the measurement of squeezing in (generalized) Einstein-Podolski-Rosen quadratures of suitable temporal modes of the stationary light field. Squeezing can reach levels of up to 50% of noise reduction below shot noise in the limit of large quantum cooperativity. Remarkably, entanglement persists even in the opposite limit of small cooperativity. Viewing the optomechanical device as a position sensor, entanglement between mechanics and light is an instance of object-apparatus entanglement predicted by quantum measurement theory.
We present a scheme for photonic transistors based on photons and phonons in a cavity electromechanical system, which is consisted of a superconducting microwave cavity coupled to a nanomechanical resonator. Control of the propagation of photons is achieved through the interaction of microwave field (photons) and nanomechanical vibrations (phonons). By calculating the transmission spectrum of the signal field, we show that the signal field can be efficiently attenuated or amplified, depending on the power of a second `gating(pump) field. This scheme may be a promising candidate for single-photon transistors and pave the way for numerous applications in telecommunication and quantum information technologies.
Nano- and micromechanical solid-state quantum devices have become a focus of attention. Reliably generating nonclassical states of their motion is of interest both for addressing fundamental questions about macroscopic quantum phenomena and for developing quantum technologies in the domains of sensing and transduction. We used quantum optical control techniques to conditionally generate single-phonon Fock states of a nanomechanical resonator. We performed a Hanbury Brown and Twiss-type experiment that verified the nonclassical nature of the phonon state without requiring full state reconstruction. Our result establishes purely optical quantum control of a mechanical oscillator at the single-phonon level.