Do you want to publish a course? Click here

Strongly coupled single quantum dot in a photonic crystal waveguide cavity

178   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. In this letter, we demonstrate a strongly coupled system formed by a single quantum dot and such a photonic crystal cavity. The resonance originating from the cavity is clearly identified from the photoluminescence mapping of the out-of-plane scattered signal along the photonic crystal waveguide. The quantum dot exciton is tuned towards the cavity mode by temperature control. A vacuum Rabi splitting of ~ 140 mueV is observed at resonance.



rate research

Read More

248 - K. H. Madsen , S. Ates , J. Liu 2014
We demonstrate a single-photon collection efficiency of $(44.3pm2.1)%$ from a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon purity of $g^{(2)}(0)=(4pm5)%$ recorded above the saturation power. The high efficiency is directly confirmed by detecting up to $962pm46$ kilocounts per second on a single-photon detector on another quantum dot coupled to the cavity mode. The high collection efficiency is found to be broadband, as is explained by detailed numerical simulations. Cavity-enhanced efficient excitation of quantum dots is obtained through phonon-mediated excitation and under these conditions, single-photon indistinguishability measurements reveal long coherence times reaching $0.77pm0.19$ ns in a weak-excitation regime. Our work demonstrates that photonic crystals provide a very promising platform for highly integrated generation of coherent single photons including the efficient out-coupling of the photons from the photonic chip.
We propose methods for realization of continuous two photon source using coherently pumped quantum dot embedded inside a photonic crystal cavity. We analyze steady state population in quantum dot energy levels and field inside the cavity mode. We find conditions for population inversion in coherently pumped and incoherently pumped quantum dot. We show that squeezing in the output for two two photon laser is not visible using coherent as well as incoherent pump. We discuss effect of phonon coupling using recently developed polaron transformed master equation at low temperatures. We also propose scheme for generating squeezed state of field using four wave mixing.
We performed an experimental study of coupled optical cavity arrays in a photonic crystal platform. We find that the coupling between the cavities is significantly larger than the fabrication-induced disorder in the cavity frequencies. Satisfying this condition is necessary for using such cavity arrays to generate strongly correlated photons, which has potential application to the quantum simulation of many-body systems.
A key ingredient for a quantum network is an interface between stationary quantum bits and photons, which act as flying qubits for interactions and communication. Photonic crystal architectures are promising platforms for enhancing the coupling of light to solid state qubits. Quantum dots can be integrated into a photonic crystal, with optical transitions coupling to photons and spin states forming a long-lived quantum memory. Many researchers have now succeeded in coupling these emitters to photonic crystal cavities, but there have been no demonstrations of a functional spin qubit and quantum gates in this environment. Here we have developed a coupled cavity-quantum dot system in which the dot is controllably charged with a single electron. We perform the initialization, rotation and measurement of a single electron spin qubit using laser pulses and find that the cavity can significantly improve these processes.
178 - J.-B. Beguin 2020
Observations of thermally driven transverse vibration of a photonic crystal waveguide (PCW) are reported. The PCW consists of two parallel nanobeams with a 240 nm vacuum gap between the beams. Models are developed and validated for the transduction of beam motion to phase and amplitude modulation of a weak optical probe propagating in a guided mode (GM) of the PCW for probe frequencies far from and near to the dielectric band edge. Since our PCW has been designed for near-field atom trapping, this research provides a foundation for evaluating possible deleterious effects of thermal motion on optical atomic traps near the surfaces of PCWs. Longer term goals are to achieve strong atom-mediated links between individual phonons of vibration and single photons propagating in the GMs of the PCW, thereby enabling opto-mechanics at the quantum level with atoms, photons, and phonons. The experiments and models reported here provide a basis for assessing such goals, including sensing mechanical motion at the Standard Quantum Limit (SQL).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا