No Arabic abstract
One-dimensional lattice with strong spin-orbit interactions (SOI) and Zeeman magnetic field is shown to lead to the formation of a helical charge-density wave (CDW) state near half-filling. Interplay of the magnetic field, SOI constants and the CDW gap seems to support Majorana bound states under appropriate value of the external parameters. Explicit calculation of the quasi-particles wave functions supports a formation of the localized zero-energy state, bounded to the sample end-points. Symmetry classification of the system is provided. Relative value of the density of states shows a precise zero-energy peak at the center of the band in the non-trivial topological regime.
We study Majorana zero modes properties in cylindrical cross-section semiconductor quantum wires based on the $k cdot p$ theory and a discretized lattice model. Within this model, the influence of disorder potentials in the wire and amplitude and phase fluctuations of the superconducting order-parameter are discussed. We find that for typical wire geometries, pairing potentials, and spin-orbit coupling strengths, coupling between quasi-one-dimensional sub-bands is weak, low-energy quasiparticles near the Fermi energy are nearly completely spin-polarized, and the number of electrons in the active sub-bands of topological states is small.
We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to charge and energy fractionalization. We elucidate this concept by calculating the nonequilibrium electron distribution function in the momentum and energy domains after the injection of an energy-resolved electron. Our results shed light on how fractionalization occurs via the creation of particle-hole pairs by the injected electron. In particular, we focus on systems with a pair of counterpropagating channels, and we fully analyze the properties of each chiral fractional excitation which is created by the injection. We suggest possible routes to access their energy and momentum distribution functions in topological quantum Hall or quantum spin-Hall edge states.
Scanning tunnelling microscopy and low energy electron diffraction show a dimerization-like reconstruction in the one-dimensional atomic chains on Bi(114) at low temperatures. While one-dimensional systems are generally unstable against such a distortion, its observation is not expected for this particular surface, since there are several factors that should prevent it: One is the particular spin texture of the Fermi surface, which resembles a one-dimensional topological state, and spin protection should hence prevent the formation of the reconstruction. The second is the very short nesting vector $2 k_F$, which is inconsistent with the observed lattice distortion. A nesting-driven mechanism of the reconstruction is indeed excluded by the absence of any changes in the electronic structure near the Fermi surface, as observed by angle-resolved photoemission spectroscopy. However, distinct changes in the electronic structure at higher binding energies are found to accompany the structural phase transition. This, as well as the observed short correlation length of the pairing distortion, suggest that the transition is of the strong coupling type and driven by phonon entropy rather than electronic entropy.
We study electron transport in quasi-one-dimensional wires at relatively weak electrostatic confinements, where the Coulomb interaction distorts the ground state, leading to the bifurcation of the electronic system into two rows. Evidence of finite coupling between the rows, resulting in bonding and antibonding states, is observed. At high dc source-drain bias, a structure is observed at 0.5(2e^2/h) due to parallel double-row transport, along with a structure at 0.25(2e^2/h), providing further evidence of coupling between the two rows.
We theoretically obtain the phase diagram of localized magnetic impurity spins arranged in a one-dimensional chain on top of a one- or two-dimensional electron gas with Rashba spin-orbit coupling. The interactions between the spins are mediated by the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism through the electron gas. Recent work predicts that such a system may intrinsically support topological superconductivity when a helical spin-density wave is formed in the spins, and superconductivity is induced in the electron gas. We analyze, using both analytical and numerical techniques, the conditions under which such a helical spin state is stable in a realistic situation in the presence of disorder. We show that it becomes unstable towards the formation of (anti) ferromagnetic domains if the disorder in the impurity spin positions $delta R$ becomes comparable with the Fermi wave length. We also examine the stability of the helical state against Gaussian potential disorder in the electronic system using a diagrammatic approach. Our results suggest that in order to stabilize the helical spin state, and thus the emergent topological superconductivity, a sufficiently strong Rashba spin-orbit coupling, giving rise to Dzyaloshinskii-Moriya interactions, is required.