Do you want to publish a course? Click here

Universal quantum criticality at the Mott-Anderson transition

140   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a large N solution of a microscopic model describing the Mott-Anderson transition on a finite-coordination Bethe lattice. Our results demonstrate that strong spatial fluctuations, due to Anderson localization effects, dramatically modify the quantum critical behavior near disordered Mott transitions. The leading critical behavior of quasiparticle wavefunctions is shown to assume a universal form in the full range from weak to strong disorder, in contrast to disorder-driven non-Fermi liquid (electronic Griffiths phase) behavior, which is found only in the strongly correlated regime.



rate research

Read More

The Mott-Anderson transition in the disordered charge-transfer model displays several new features in comparison to what is found in the disordered single-band Hubbard model, as recently demonstrated by large-scale computational (statistical dynamical mean field theory) studies. Here we show that a much simpler typical medium theory approach (TMT-DMFT) to the same model is able to capture most qualitative and even quantitative aspects of the phase diagram, the emergence of an intermediate electronic Griffiths phase, and the critical behavior close to the metal-insulator transition. Conceptual and mathematical simplicity of the TMT-DMFT formulation thus makes it possible to gain useful new insight into the mechanism of the Mott-Anderson transition in these models.
205 - S. Kettemann , E. R. Mucciolo , 2009
It is well-known that magnetic impurities can change the symmetry class of disordered metallic systems by breaking spin and time-reversal symmetry. At low temperature these symmetries can be restored by Kondo screening. It is also known that at the Anderson metal-insulator transition, wave functions develop multifractal fluctuations with power law correlations. Here, we consider the interplay of these two effects. We show that multifractal correlations open local pseudogaps at the Fermi energy at some random positions in space. When dilute magnetic impurities are at these locations, Kondo screening is strongly suppressed. We find that when the exchange coupling J is smaller than a certain value J*, the metal-insulator transition point extends to a critical region in the disorder strength parameter and to a band of critical states. The width of this critical region increases with a power of the concentration of magnetic impurities.
Correlation-driven screening of disorder is studied within the typical-medium dynamical mean-field theory (TMT-DMFT) of the Mott-Anderson transition. In the strongly correlated regime, the site energies epsilon_R^i characterizing the effective disorder potential are strongly renormalized due to the phenomenon of Kondo pinning. This effect produces very strong screening when the interaction U is stronger then disorder W, but applies only to a fraction of the sites in the opposite limit (U<W).
We present a detailed analysis of the critical behavior close to the Mott-Anderson transition. Our findings are based on a combination of numerical and analytical results obtained within the framework of Typical-Medium Theory (TMT-DMFT) - the simplest extension of dynamical mean field theory (DMFT) capable of incorporating Anderson localization effects. By making use of previous scaling studies of Anderson impurity models close to the metal-insulator transition, we solve this problem analytically and reveal the dependence of the critical behavior on the particle-hole symmetry. Our main result is that, for sufficiently strong disorder, the Mott-Anderson transition is characterized by a precisely defined two-fluid behavior, in which only a fraction of the electrons undergo a site selective Mott localization; the rest become Anderson-localized quasiparticles.
We investigate the effects of disorder within the T=0 Brinkman-Rice (BR) scenario for the Mott metal-insulator transition (MIT) in two dimensions (2d). For sufficiently weak disorder the transition retains the Mott character, as signaled by the vanishing of the local quasiparticles (QP) weights Z_{i} and strong disorder screening at criticality. In contrast to the behavior in high dimensions, here the local spatial fluctuations of QP parameters are strongly enhanced in the critical regime, with a distribution function P(Z) ~ Z^{alpha-1} and alpha tends to zero at the transition. This behavior indicates a robust emergence of an electronic Griffiths phase preceding the MIT, in a fashion surprisingly reminiscent of the Infinite Randomness Fixed Point scenario for disordered quantum magnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا