Do you want to publish a course? Click here

Superconducting microstrip amplifiers with sub-Kelvin noise temperature near 4 GHz

150   0   0.0 ( 0 )
 Added by Michael P. DeFeo
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present measurements of an amplifier operating at 3.8 GHz with 150 MHz of bandwidth based on the microstrip input-coil resonance of a dc superconducting quantum interference device (SQUID) with submicron Josephson junctions. The noise temperature is measured using two methods: comparing the signal-to-noise ratio of the system with and without the SQUID in the amplifier chain, and using a modified Y-factor technique where calibrated narrowband noise is mixed up to the SQUID amplifier operating frequency. With the SQUID cooled to 0.35 K we observe a minimum system noise temperature of 0.55 $pm~0.13$ K, dominated by the contribution from the SQUID amplifier.



rate research

Read More

The use of cryogenic silicon as a detector medium for dark matter searches is gaining popularity. Many of these searches are highly dependent on the value of the photoelectric absorption cross section of silicon at low temperatures, particularly near the silicon band gap energy, where the searches are most sensitive to low mass dark matter candidates. While such cross section data has been lacking from the literature, previous dark matter search experiments have attempted to estimate this parameter by extrapolating it from higher temperature data. However, discrepancies in the high temperature data have led to order-of-magnitude differences in the extrapolations. In this paper, we resolve these discrepancies by using a novel technique to make a direct, low temperature measurement of the photoelectric absorption cross section of silicon at energies near the band gap.
194 - M.P. DeFeo , P. Bhupathi , K. Yu 2010
We present measurements of an amplifier based on a dc superconducting quantum interference device (SQUID) with submicron Al-AlOx-Al Josephson junctions. The small junction size reduces their self-capacitance and allows for the use of relatively large resistive shunts while maintaining nonhysteretic operation. This leads to an enhancement of the SQUID transfer function compared to SQUIDs with micron-scale junctions. The device layout is modified from that of a conventional SQUID to allow for coupling signals into the amplifier with a substantial mutual inductance for a relatively short microstrip coil. Measurements at 310 mK exhibit gain of 32 dB at 1.55 GHz.
The uncertainty of the ac Stark shift due to thermal radiation represents a major contribution to the systematic uncertainty budget of state-of-the-art optical atomic clocks. In the case of optical clocks based on trapped ions, the thermal behavior of the rf-driven ion trap must be precisely known. This determination is even more difficult when scalable linear ion traps are used. Such traps enable a more advanced control of multiple ions and have become a platform for new applications in quantum metrology, simulation and computation. Nevertheless, their complex structure makes it more difficult to precisely determine its temperature in operation and thus the related systematic uncertainty. We present here scalable linear ion traps for optical clocks, which exhibit very low temperature rise under operation. We use a finite-element model refined with experimental measurements to determine the thermal distribution in the ion trap and the temperature at the position of the ions. The trap temperature is investigated at different rf-drive frequencies and amplitudes with an infrared camera and integrated temperature sensors. We show that for typical trapping parameters for $mathrm{In}^{+}$, $mathrm{Al}^{+}$, $mathrm{Lu}^{+}$, $mathrm{Ca}^{+}$, $mathrm{Sr}^{+}$ or $mathrm{Yb}^{+}$ ions, the temperature rise at the position of the ions resulting from rf heating of the trap stays below 700 mK and can be controlled with an uncertainty on the order of a few 100 mK maximum.
Point contact Andreev reflection studies have been conducted on FeSe single crystals by lowering the temperatures down to 0.5 K. The point contact Andreev reflection spectra were analyzed in the framework of the two-band model. As a result, the presence of two anisotropic superconducting gaps in FeSe were certainly established and their BCS-like temperature dependencies were obtained. The weights of each gap have been determined and the anisotropy parameter has been calculated. It is shown, that sub-kelvin temperatures are necessary to ascertain details of the superconducting gap structure, especially for multiband materials when Andreev reflection spectroscopy is applied.
The response of superconducting pair-breaking detectors is dependent on the details of the quasiparticle distribution. In Kinetic Inductance Detectors (KIDs), where both pair breaking and non-pair breaking photons are absorbed simultaneously, calculating the detector response therefore requires knowledge of the often nonequilibrium distributions. The quasiparticle effective temperature provides a good approximation to these nonequilibrium distributions. We compare an analytical expression relating absorbed power and the quasiparticle effective temperature in superconducting thin films to full solutions for the nonequilibrium distributions, and find good agreement for a range of materials, absorbed powers, photon frequencies and temperatures typical of KIDs. This analytical expression allows inclusion of nonequilibrium effects in device models without solving for the detailed distributions. We also show our calculations of the frequency dependence of the detector response are in agreement with recent experimental measurements of the response of Ta KIDs at THz frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا