Do you want to publish a course? Click here

A local-global generalized multiscale finite element method for highly heterogeneous stochastic groundwater flow problems

119   0   0.0 ( 0 )
 Added by Yiran Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete characterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.



rate research

Read More

In this paper, we consider an online enrichment procedure using the Generalized Multiscale Finite Element Method (GMsFEM) in the context of a two-phase flow model in heterogeneous porous media. The coefficient of the elliptic equation is referred to as the permeability and is the main source of heterogeneity within the model. The elliptic pressure equation is solved using online GMsFEM, and is coupled with a hyperbolic transport equation where local conservation of mass is necessary. To satisfy the conservation property, we aim at constructing conservative fluxes within the space of multiscale basis functions through the use of a postprocessing technique. In order to improve the accuracy of the pressure and velocity solutions in the online GMsFEM we apply a systematic online enrichment procedure. The increase in pressure accuracy due to the online construction is inherited by the conservative flux fields and the desired saturation solutions from the coupled transport equation. Despite the fact that the coefficient of the pressure equation is dependent on the saturation which may vary in time, we may construct an approximation space using the initial coefficient where no further basis updates follow. Numerical results corresponding to four different types of heterogeneous permeability coefficients are exhibited to test the proposed methodology.
In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary correctors is a common technique in existing methods to prove the convergence rate of MsFEM, while we think not reflects the essence of those problems. Instead, we focus on the first-order expansion structure. Through recently developed estimations in homogenization theory, our convergence rate is provided with milder assumptions and in neat forms.
In this paper, we systemically review and compare two mixed multiscale finite element methods (MMsFEM) for multiphase transport in highly heterogeneous media. In particular, we will consider the mixed multiscale finite element method using limited global information, simply denoted by MMsFEM, and the mixed generalized multiscale finite element method (MGMsFEM) with residual driven online multiscale basis functions. Both methods are under the framework of mixed multiscale finite element methods, where the pressure equation is solved in the coarse grid with carefully constructed multiscale basis functions for the velocity. The multiscale basis functions in both methods include local and global media information. In terms of MsFEM using limited global information, only one multiscale basis function is utilized in each local neighborhood while multiple basis are used in MGMsFEM. We will test and compare these two methods using the benchmark three-dimensional SPE10 model. A range of coarse grid sizes and different combinations of basis functions (offline and online) will be considered with CPU time reported for each case. In our numerical experiments, we observe good accuracy by the two above methods. Finally, we will discuss and compare the advantages and disadvantages of the two methods in terms of accuracy and computational costs.
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and nonlinear part -- such as the dynamic rupture along a fault with near fault plasticity -- and the high accuracy and computational efficiency of SBIM is used to simulate the exterior half spaces perfectly truncating all incident waves. The exact truncation allows us to greatly reduce the domain of spatial discretization compared to a traditional FEM approach, leading to considerable savings in computational cost and memory requirements. The coupling of FEM and SBIM is achieved by the exchange of traction and displacement boundary conditions at the computationally defined boundary. The method is suited to implementation on massively parallel computers. We validate the developed method by means of a benchmark problem. Three more complex examples with a low velocity fault zone, low velocity off-fault inclusion, and interaction of multiple faults, respectively, demonstrate the capability of the hybrid scheme in solving problems of very large sizes. Finally, we discuss potential applications of the hybrid method for problems in geophysics and engineering.
The dual continuum model serves as a powerful tool in the modeling of subsurface applications. It allows a systematic coupling of various components of the solutions. The system is of multiscale nature as it involves high heterogeneous and high contrast coefficients. To numerically compute the solutions, some types of reduced order methods are necessary. We will develop and analyze a novel multiscale method based on the recent advances in multiscale finite element methods. Our method will compute multiple local multiscale basis functions per coarse region. The idea is based on some local spectral problems, which are important to identify high contrast channels, and an energy minimization principle. Using these concepts, we show that the basis functions are localized, even in the presence of high contrast long channels and fractures. In addition, we show that the convergence of the method depends only on the coarse mesh size. Finally, we present several numerical tests to show the performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا