Do you want to publish a course? Click here

Nanoscale ferroelectric manipulation of magnetic flux quanta

215   0   0.0 ( 0 )
 Added by Javier Villegas
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using heterostructures that combine a large-polarization ferroelectric (BiFeO3) and a high-temperature superconductor (YBa2Cu3O7-{delta}), we demonstrate the modulation of the superconducting condensate at the nanoscale via ferroelectric field effects. Through this mechanism, a nanoscale pattern of normal regions that mimics the ferroelectric domain structure can be created in the superconductor. This yields an energy landscape for magnetic flux quanta and, in turn, couples the local ferroelectric polarization to the local magnetic induction. We show that this form of magnetoelectric coupling, together with the possibility to reversibly design the ferroelectric domain structure, allows the electrostatic manipulation of magnetic flux quanta.



rate research

Read More

Magnetic field can penetrate into type-II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. Although the average properties of the vortex matter can be tuned with magnetic fields, temperature or electric currents, handling of individual vortices remains challenging and has been demonstrated only with sophisticated magnetic force, superconducting quantum interference device or strain-induced scanning local probe microscopies. Here, we introduce a far-field optical method based on local heating of the superconductor with a focused laser beam to realize a fast, precise and non-invasive manipulation of individual Abrikosov vortices, in the same way as with optical tweezers. This simple approach provides the perfect basis for sculpting the magnetic flux profile in superconducting devices like a vortex lens or a vortex cleaner, without resorting to static pinning or ratchet effects. Since a single vortex can induce a Josephson phase shift, our method also paves the way to fast optical drive of Josephson junctions, with potential massive parallelization of operations.
115 - Jun Chen , Shuai Dong 2021
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferromagnetic multiferroics using electric field. Different from those studies based on static domain-level couplings, here the magnetoelectric coupling relies on the collaborative spin dynamics around domain walls. Accompanying the reversal of spin chirality driven by polarization switching, a rolling-downhill-like motion of domain wall is achieved at the nanoscale, which tunes the magnetization locally. Our mechanism opens an alternative route to pursuit practical and fast converse magnetoelectric functions via spin dynamics.
The dynamics of Abrikosov vortices in superconductors is usually limited to vortex velocities $vsimeq1$ km/s above which samples abruptly transit into the normal state. In the Larkin-Ovchinnikov framework, near the critical temperature this is because of a flux-flow instability triggered by the reduction of the viscous drag coefficient due to the quasiparticles leaving the vortex cores. While the existing instability theories rely upon a uniform spatial distribution of vortex velocities, the measured (mean) value of $v$ is always smaller than the maximal possible one, since the distribution of $v$ never reaches the $delta$-functional shape. Here, by guiding magnetic flux quanta at a tilt angle of $15^circ$ with respect to a Co nanostripe array, we speed up vortices to supersonic velocities. These exceed $v$ in the reference as-grown Nb films by almost an order of magnitude and are only a factor of two smaller than the maximal vortex velocities observed in superconductors so far. We argue that such high $v$ values appear in consequence of a collective dynamic ordering when all vortices move in the channels with the same pinning strength and exhibit a very narrow distribution of $v$. Our findings render the well-known vortex guiding effect to open prospects for investigations of ultrafast vortex dynamics.
Despite theoretical predictions for a Cherenkov-type radiation of spin waves (magnons) by various propagating magnetic perturbations, fast-enough moving magnetic field stimuli have not been available so far. Here, we experimentally realize the Cherenkov radiation of spin waves in a Co-Fe magnonic conduit by fast-moving (>1 km/s) magnetic flux quanta (Abrikosov vortices) in an adjacent Nb-C superconducting strip. The radiation is evidenced by the microwave detection of spin waves propagating a distance of 2 micrometers from the superconductor and it is accompanied by a magnon Shapiro step in its current-voltage curve. The spin-wave excitation is unidirectional and monochromatic, with sub-40 nm wavelengths determined by the period of the vortex lattice. The phase-locking of the vortex lattice with the excited spin wave limits the vortex velocity and reduces the dissipation in the superconductor.
While it is known that the nature and the arrangement of defects in complex oxides have an impact on the material functionalities little is known on control of superconductivity by oxygen interstitial organization in cuprates. Here we report direct compelling evidence for the control of Tc, by manipulation of the superconducting granular networks of nanoscale puddles, made of ordered oxygen stripes, in a single crystal of YBa2Cu3O6.5+y with average formal hole doping p close to 1/8. Upon thermal treatments we were able to switch from a first network of oxygen defects striped puddles with OVIII modulation (qOVIII(a*)=(h+3/8,k,0) and qOVIII(a*)=(h+5/8,k,0)), to second network characterized by OXVI modulation (qOXVI(a*)=(h+7/16,k,0) and qOXVI(a*)=(h+9/16,k,0)), and finally to a third network with puddles of OV periodicity (qOV(a*)=(4/10,1,0) and qOV(a*)=(6/10,1,0)). We map the microscopic spatial evolution of the out of plane OVIII, OXVI and OV puddles nano-size distribution via scanning micro-diffraction measurements. In particular, we calculated the number of oxygen chains (n) and the charge density (holes concentration p) inside each puddle, analyzing areas of 160x80 {mu}m2, and recording 12800 diffraction patterns to reconstruct each spatial map. The high spatial inhomogeneity shown by all the reconstructed spatial maps reflects the intrinsic granular structure that characterizes cuprates and iron-chalcogenides, disclosing the presence of several complex networks of coexisting superconducting domains with different lattice modulations, charge density and different gaps like in the proposed multi-gaps scenario called superstripes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا