Do you want to publish a course? Click here

Manipulation of magnetic domain wall by ferroelectric switching: Dynamic magnetoelectricity at the nanoscale

116   0   0.0 ( 0 )
 Added by Shuai Dong
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Controlling magnetism using voltage is highly desired for applications, but remains challenging due to fundamental contradiction between polarity and magnetism. Here we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferromagnetic multiferroics using electric field. Different from those studies based on static domain-level couplings, here the magnetoelectric coupling relies on the collaborative spin dynamics around domain walls. Accompanying the reversal of spin chirality driven by polarization switching, a rolling-downhill-like motion of domain wall is achieved at the nanoscale, which tunes the magnetization locally. Our mechanism opens an alternative route to pursuit practical and fast converse magnetoelectric functions via spin dynamics.



rate research

Read More

Using heterostructures that combine a large-polarization ferroelectric (BiFeO3) and a high-temperature superconductor (YBa2Cu3O7-{delta}), we demonstrate the modulation of the superconducting condensate at the nanoscale via ferroelectric field effects. Through this mechanism, a nanoscale pattern of normal regions that mimics the ferroelectric domain structure can be created in the superconductor. This yields an energy landscape for magnetic flux quanta and, in turn, couples the local ferroelectric polarization to the local magnetic induction. We show that this form of magnetoelectric coupling, together with the possibility to reversibly design the ferroelectric domain structure, allows the electrostatic manipulation of magnetic flux quanta.
Magnetic-domain structure and dynamics play an important role in understanding and controlling the magnetic properties of two-dimensional magnets, which are of interest to both fundamental studies and applications[1-5]. However, the probe methods based on the spin-dependent optical permeability[1,2,6] and electrical conductivity[7-10] can neither provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to image and understand the rich properties of magnetic domains. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr$_3$. The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism with a saturation magnetization of about 26~$mu_B$/nm$^2$ for bilayer CrBr$_3$. The magnetic-domain structure and pinning-effect dominated domain reversal process are verified by micromagnetic simulation. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore two-dimensional magnetism at the nanoscale.
Magnetoelectric coupling in ferromagnet/multiferroic systems is often manifested in the exchange bias effect, which may have combined contributions from multiple sources, such as domain walls, chemical defects or strain. In this study we magnetically fingerprint the coupling behavior of CoFe grown on epitaxial BiFeO3 (BFO) thin films by magnetometry and first-order-reversal-curves (FORC). The contribution to exchange bias from 71{deg}, 109{deg} and charged ferroelectric domain walls (DWs) was elucidated by the FORC distribution. CoFe samples grown on BFO with 71{deg} DWs only exhibit an enhancement of the coercivity, but little exchange bias. Samples grown on BFO with 109{deg} DWs and mosaic DWs exhibit a much larger exchange bias, with the main enhancement attributed to 109{deg} and charged DWs. Based on the Malozemoff random field model, a varying-anisotropy model is proposed to account for the exchange bias enhancement. This work sheds light on the relationship between the exchange bias effect of the CoFe/BFO heterointerface and the ferroelectric DWs, and provides a path for multiferroic device analysis and design.
199 - Gongzheng Chen , Jin Lan , Tai Min 2021
Ferroelectric materials are spontaneous symmetry breaking systems characterized by ordered electric polarizations. Similar to its ferromagnetic counterpart, a ferroelectric domain wall can be regarded as a soft interface separating two different ferroelectric domains. Here we show that two bound state excitations of electric polarization (polar wave), or the vibration and breathing modes, can be hosted and propagate within the ferroelectric domain wall. Specially, the vibration polar wave has zero frequency gap, thus is constricted deeply inside ferroelectric domain wall, and can propagate even in the presence of local pinnings. The ferroelectric domain wall waveguide as demonstrated here, offers new paradigm in developing ferroelectric information processing units.
Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain wall interactions. A defect-dipole model is proposed. Finite element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا