Do you want to publish a course? Click here

Cherenkov radiation of spin waves by ultra-fast moving magnetic flux quanta

89   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite theoretical predictions for a Cherenkov-type radiation of spin waves (magnons) by various propagating magnetic perturbations, fast-enough moving magnetic field stimuli have not been available so far. Here, we experimentally realize the Cherenkov radiation of spin waves in a Co-Fe magnonic conduit by fast-moving (>1 km/s) magnetic flux quanta (Abrikosov vortices) in an adjacent Nb-C superconducting strip. The radiation is evidenced by the microwave detection of spin waves propagating a distance of 2 micrometers from the superconductor and it is accompanied by a magnon Shapiro step in its current-voltage curve. The spin-wave excitation is unidirectional and monochromatic, with sub-40 nm wavelengths determined by the period of the vortex lattice. The phase-locking of the vortex lattice with the excited spin wave limits the vortex velocity and reduces the dissipation in the superconductor.

rate research

Read More

Using heterostructures that combine a large-polarization ferroelectric (BiFeO3) and a high-temperature superconductor (YBa2Cu3O7-{delta}), we demonstrate the modulation of the superconducting condensate at the nanoscale via ferroelectric field effects. Through this mechanism, a nanoscale pattern of normal regions that mimics the ferroelectric domain structure can be created in the superconductor. This yields an energy landscape for magnetic flux quanta and, in turn, couples the local ferroelectric polarization to the local magnetic induction. We show that this form of magnetoelectric coupling, together with the possibility to reversibly design the ferroelectric domain structure, allows the electrostatic manipulation of magnetic flux quanta.
Almost any use of a superconductor implies a nonequilibrium state. Remarkably, the non-equilibrium states induced by a microwave stimulus and the dynamics of magnetic flux quanta (Abrikosov vortices) can give rise to strikingly contrary effects: A sufficiently high-power electromagnetic field of GHz frequency can stimulate superconductivity, whereas fast vortex motion can trigger an instability abruptly quenching the superconducting state. Here, we advance or delay such dynamical quenching of the vortex state in Nb thin films by tuning the power and frequency of the microwave ac stimulus added to a dc bias current. The experimental findings are supported by time-dependent Ginzburg-Landau simulations and they can be explained qualitatively based on a model of breathing mobile hot spots, implying a competition of heating and cooling of quasiparticles along the trajectories of moving fluxons whose core sizes vary in time. In addition, we demonstrate universality of the stimulation effect on the thermodynamic and transport properties of type II superconductors.
The textit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustration point. However, the suppressed charge matrix elements and low transition frequency have made it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout, that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to initialize the qubit with $97$% fidelity, corresponding to cooling it to $190~mathrm{mu K}$. We realize high-fidelity control using a universal set of single-cycle flux gates, which are comprised of directly synthesizable fast pulses, while plasmon-assisted readout is used for measurements. On a qubit with $T_1, T_{2e}sim$~300~$mathrm{mu s}$, we realize single-qubit gates in $20-60$~ns with an average gate fidelity of $99.8%$ as characterized by randomized benchmarking.
The dynamics of Abrikosov vortices in superconductors is usually limited to vortex velocities $vsimeq1$ km/s above which samples abruptly transit into the normal state. In the Larkin-Ovchinnikov framework, near the critical temperature this is because of a flux-flow instability triggered by the reduction of the viscous drag coefficient due to the quasiparticles leaving the vortex cores. While the existing instability theories rely upon a uniform spatial distribution of vortex velocities, the measured (mean) value of $v$ is always smaller than the maximal possible one, since the distribution of $v$ never reaches the $delta$-functional shape. Here, by guiding magnetic flux quanta at a tilt angle of $15^circ$ with respect to a Co nanostripe array, we speed up vortices to supersonic velocities. These exceed $v$ in the reference as-grown Nb films by almost an order of magnitude and are only a factor of two smaller than the maximal vortex velocities observed in superconductors so far. We argue that such high $v$ values appear in consequence of a collective dynamic ordering when all vortices move in the channels with the same pinning strength and exhibit a very narrow distribution of $v$. Our findings render the well-known vortex guiding effect to open prospects for investigations of ultrafast vortex dynamics.
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement sensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا