Do you want to publish a course? Click here

Arc Consistency and Friends

127   0   0.0 ( 0 )
 Added by Berit Gru{\\ss}ien
 Publication date 2011
and research's language is English




Ask ChatGPT about the research

A natural and established way to restrict the constraint satisfaction problem is to fix the relations that can be used to pose constraints; such a family of relations is called a constraint language. In this article, we study arc consistency, a heavily investigated inference method, and three extensions thereof from the perspective of constraint languages. We conduct a comparison of the studied methods on the basis of which constraint languages they solve, and we present new polynomial-time tractability results for singleton arc consistency, the most powerful method studied.



rate research

Read More

We study the dominating set reconfiguration problem with the token sliding rule. It consists, given a graph G=(V,E) and two dominating sets D_s and D_t of G, in determining if there exists a sequence S=<D_1:=D_s,...,D_l:=D_t> of dominating sets of G such that for any two consecutive dominating sets D_r and D_{r+1} with r<t, D_{r+1}=(D_r u) U v, where uv is an edge of G. In a recent paper, Bonamy et al studied this problem and raised the following questions: what is the complexity of this problem on circular arc graphs? On circle graphs? In this paper, we answer both questions by proving that the problem is polynomial on circular-arc graphs and PSPACE-complete on circle graphs.
147 - Bernd R. Schuh 2009
For formulas F of propositional calculus I introduce a metavariable MF and show how it can be used to define an algorithm for testing satisfiability. MF is a formula which is true/false under all possible truth assignments iff F is satisfiable/unsatisfiable. In this sense MF is a metavariable with the meaning F is SAT. For constructing MF a group of transformations of the basic variables ai is used which corresponds to flipping literals to their negation. The whole procedure corresponds to branching algorithms where a formula is split with respect to the truth values of its variables, one by one. Each branching step corresponds to an approximation to the metatheorem which doubles the chance to find a satisfying truth assignment but also doubles the length of the formulas to be tested, in principle. Simplifications arise by additional length reductions. I also discuss the notion of logical primes and show that each formula can be written as a uniquely defined product of such prime factors. Satisfying truth assignments can be found by determining the missing primes in the factorization of a formula.
The $k$-dimensional Weisfeiler-Leman algorithm ($k$-WL) is a fruitful approach to the Graph Isomorphism problem. 2-WL corresponds to the original algorithm suggested by Weisfeiler and Leman over 50 years ago. 1-WL is the classical color refinement routine. Indistinguishability by $k$-WL is an equivalence relation on graphs that is of fundamental importance for isomorphism testing, descriptive complexity theory, and graph similarity testing which is also of some relevance in artificial intelligence. Focusing on dimensions $k=1,2$, we investigate subgraph patterns whose counts are $k$-WL invariant, and whose occurrence is $k$-WL invariant. We achieve a complete description of all such patterns for dimension $k=1$ and considerably extend the previous results known for $k=2$.
In the field of constraint satisfaction problems (CSP), promise CSPs are an exciting new direction of study. In a promise CSP, each constraint comes in two forms: strict and weak, and in the associated decision problem one must distinguish between being able to satisfy all the strict constraints versus not being able to satisfy all the weak constraints. The most commonly cited example of a promise CSP is the approximate graph coloring problem--which has recently seen exciting progress [BKO19, WZ20] benefiting from a systematic algebraic approach to promise CSPs based on polymorphisms, operations that map tuples in the strict form of each constraint to tuples in the corresponding weak form. In this work, we present a simple algorithm which in polynomial time solves the decision problem for all promise CSPs that admit infinitely many symmetric polymorphisms, which are invariant under arbitrary coordinate permutations. This generalizes previous work of the first two authors [BG19]. We also extend this algorithm to a more general class of block-symmetric polymorphisms. As a corollary, this single algorithm solves all polynomial-time tractable Boolean CSPs simultaneously. These results give a new perspective on Schaefers classic dichotomy theorem and shed further light on how symmetries of polymorphisms enable algorithms. Finally, we show that block symmetric polymorphisms are not only sufficient but also necessary for this algorithm to work, thus establishing its precise power
The recent work of Clark et al. introduces the AI2 Reasoning Challenge (ARC) and the associated ARC dataset that partitions open domain, complex science questions into an Easy Set and a Challenge Set. That paper includes an analysis of 100 questions with respect to the types of knowledge and reasoning required to answer them; however, it does not include clear definitions of these types, nor does it offer information about the quality of the labels. We propose a comprehensive set of definitions of knowledge and reasoning types necessary for answering the questions in the ARC dataset. Using ten annotators and a sophisticated annotation interface, we analyze the distribution of labels across the Challenge Set and statistics related to them. Additionally, we demonstrate that although naive information retrieval methods return sentences that are irrelevant to answering the query, sufficient supporting text is often present in the (ARC) corpus. Evaluating with human-selected relevant sentences improves the performance of a neural machine comprehension model by 42 points.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا