No Arabic abstract
The recent work of Clark et al. introduces the AI2 Reasoning Challenge (ARC) and the associated ARC dataset that partitions open domain, complex science questions into an Easy Set and a Challenge Set. That paper includes an analysis of 100 questions with respect to the types of knowledge and reasoning required to answer them; however, it does not include clear definitions of these types, nor does it offer information about the quality of the labels. We propose a comprehensive set of definitions of knowledge and reasoning types necessary for answering the questions in the ARC dataset. Using ten annotators and a sophisticated annotation interface, we analyze the distribution of labels across the Challenge Set and statistics related to them. Additionally, we demonstrate that although naive information retrieval methods return sentences that are irrelevant to answering the query, sufficient supporting text is often present in the (ARC) corpus. Evaluating with human-selected relevant sentences improves the performance of a neural machine comprehension model by 42 points.
We present a new question set, text corpus, and baselines assembled to encourage AI research in advanced question answering. Together, these constitute the AI2 Reasoning Challenge (ARC), which requires far more powerful knowledge and reasoning than previous challenges such as SQuAD or SNLI. The ARC question set is partitioned into a Challenge Set and an Easy Set, where the Challenge Set contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurence algorithm. The dataset contains only natural, grade-school science questions (authored for human tests), and is the largest public-domain set of this kind (7,787 questions). We test several baselines on the Challenge Set, including leading neural models from the SQuAD and SNLI tasks, and find that none are able to significantly outperform a random baseline, reflecting the difficult nature of this task. We are also releasing the ARC Corpus, a corpus of 14M science sentences relevant to the task, and implementations of the three neural baseline models tested. Can your model perform better? We pose ARC as a challenge to the community.
Recent years have witnessed the prosperity of legal artificial intelligence with the development of technologies. In this paper, we propose a novel legal application of legal provision prediction (LPP), which aims to predict the related legal provisions of affairs. We formulate this task as a challenging knowledge graph completion problem, which requires not only text understanding but also graph reasoning. To this end, we propose a novel text-guided graph reasoning approach. We collect amounts of real-world legal provision data from the Guangdong government service website and construct a legal dataset called LegalLPP. Extensive experimental results on the dataset show that our approach achieves better performance compared with baselines. The code and dataset are available in url{https://github.com/zxlzr/LegalPP} for reproducibility.
A video-grounded dialogue system is required to understand both dialogue, which contains semantic dependencies from turn to turn, and video, which contains visual cues of spatial and temporal scene variations. Building such dialogue systems is a challenging problem, involving various reasoning types on both visual and language inputs. Existing benchmarks do not have enough annotations to thoroughly analyze dialogue systems and understand their capabilities and limitations in isolation. These benchmarks are also not explicitly designed to minimise biases that models can exploit without actual reasoning. To address these limitations, in this paper, we present DVD, a Diagnostic Dataset for Video-grounded Dialogues. The dataset is designed to contain minimal biases and has detailed annotations for the different types of reasoning over the spatio-temporal space of video. Dialogues are synthesized over multiple question turns, each of which is injected with a set of cross-turn semantic relationships. We use DVD to analyze existing approaches, providing interesting insights into their abilities and limitations. In total, DVD is built from $11k$ CATER synthetic videos and contains $10$ instances of $10$-round dialogues for each video, resulting in more than $100k$ dialogues and $1M$ question-answer pairs. Our code and dataset are publicly available at https://github.com/facebookresearch/DVDialogues.
Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the KGs. The path-based knowledge reasoning algorithm is one of the most important approaches to this task. This type of method has received great attention in recent years because of its high performance and interpretability. In fact, traditional methods such as path ranking algorithm (PRA) take the paths between an entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of the knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot be further improved due to the two aspects of entity sparseness and path sparseness. To address the above issues, this paper proposes two novel path-based reasoning methods to solve the sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in textual semantic representation.
Reasoning is a critical ability towards complete visual understanding. To develop machine with cognition-level visual understanding and reasoning abilities, the visual commonsense reasoning (VCR) task has been introduced. In VCR, given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer. The methods adopting the powerful BERT model as the backbone for learning joint representation of image content and natural language have shown promising improvements on VCR. However, none of the existing methods have utilized commonsense knowledge in visual commonsense reasoning, which we believe will be greatly helpful in this task. With the support of commonsense knowledge, complex questions even if the required information is not depicted in the image can be answered with cognitive reasoning. Therefore, we incorporate commonsense knowledge into the cross-modal BERT, and propose a novel Knowledge Enhanced Visual-and-Linguistic BERT (KVL-BERT for short) model. Besides taking visual and linguistic contents as input, external commonsense knowledge extracted from ConceptNet is integrated into the multi-layer Transformer. In order to reserve the structural information and semantic representation of the original sentence, we propose using relative position embedding and mask-self-attention to weaken the effect between the injected commonsense knowledge and other unrelated components in the input sequence. Compared to other task-specific models and general task-agnostic pre-training models, our KVL-BERT outperforms them by a large margin.