Do you want to publish a course? Click here

The Power of the Combined Basic LP and Affine Relaxation for Promise CSPs

288   0   0.0 ( 0 )
 Added by Joshua Brakensiek
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In the field of constraint satisfaction problems (CSP), promise CSPs are an exciting new direction of study. In a promise CSP, each constraint comes in two forms: strict and weak, and in the associated decision problem one must distinguish between being able to satisfy all the strict constraints versus not being able to satisfy all the weak constraints. The most commonly cited example of a promise CSP is the approximate graph coloring problem--which has recently seen exciting progress [BKO19, WZ20] benefiting from a systematic algebraic approach to promise CSPs based on polymorphisms, operations that map tuples in the strict form of each constraint to tuples in the corresponding weak form. In this work, we present a simple algorithm which in polynomial time solves the decision problem for all promise CSPs that admit infinitely many symmetric polymorphisms, which are invariant under arbitrary coordinate permutations. This generalizes previous work of the first two authors [BG19]. We also extend this algorithm to a more general class of block-symmetric polymorphisms. As a corollary, this single algorithm solves all polynomial-time tractable Boolean CSPs simultaneously. These results give a new perspective on Schaefers classic dichotomy theorem and shed further light on how symmetries of polymorphisms enable algorithms. Finally, we show that block symmetric polymorphisms are not only sufficient but also necessary for this algorithm to work, thus establishing its precise power



rate research

Read More

We precisely determine the SDP value (equivalently, quantum value) of large random instances of certain kinds of constraint satisfaction problems, ``two-eigenvalue 2CSPs. We show this SDP value coincides with the spectral relaxation value, possibly indicating a computational threshold. Our analysis extends the previously resolved cases of random regular $mathsf{2XOR}$ and $textsf{NAE-3SAT}$, and includes new cases such as random $mathsf{Sort}_4$ (equivalently, $mathsf{CHSH}$) and $mathsf{Forrelation}$ CSPs. Our techniques include new generalizations of the nonbacktracking operator, the Ihara--Bass Formula, and the Friedman/Bordenave proof of Alons Conjecture.
The constraint satisfaction problem (CSP) of a first-order theory $T$ is the computational problem of deciding whether a given conjunction of atomic formulas is satisfiable in some model of $T$. We study the computational complexity of $mathrm{CSP}(T_1 cup T_2)$ where $T_1$ and $T_2$ are theories with disjoint finite relational signatures. We prove that if $T_1$ and $T_2$ are the theories of temporal structures, i.e., structures where all relations have a first-order definition in $(mathbb{Q};<)$, then $mathrm{CSP}(T_1 cup T_2)$ is in P or NP-complete. To this end we prove a purely algebraic statement about the structure of the lattice of locally closed clones over the domain ${mathbb Q}$ that contain $mathrm{Aut}(mathbb{Q};<)$.
Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with $n$ variables and $m$ clauses, there is a value of $m = Omega(n)$ beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when $m/n = omega(1)$). Intuitively, strong refutation should become easier as the clause density $m/n$ grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as $k$-SAT and $k$-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, $m/n ge widetilde O(n^{k/2-1})$, and the clause density at which instances become unsatisfiable with high probability, $m/n = omega (1)$. In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random $k$-XOR instances with clause density $m/n ge widetilde O(n^{(k/2-1)(1-delta)})$ in time $exp(widetilde O(n^{delta}))$ or in $widetilde O(n^{delta})$ rounds of the sum-of-squares hierarchy, for any $delta in [0,1)$ and any integer $k ge 3$. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at $delta = 0$, and brute-force refutation at the satisfiability threshold when $delta = 1$. We also leverage our $k$-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors.
An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of the space of satisfying or almost satisfying assignments as the function of the density, for which a precise landscape of predictions has been made via statistical physics-based heuristics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction problems, via nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our work is the following question: what does the solution space for a random CSP look like to an efficient algorithm? In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at the densities where they are unsatisfiable but no refutation algorithm is known. 1. Counts. For every Boolean CSP we give algorithms that with high probability certify a subexponential upper bound on the number of solutions. We also give algorithms to certify a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large independent sets in a random $d$-regular graph. 2. Clusters. For Boolean $3$CSPs we give algorithms that with high probability certify an upper bound on the number of clusters of solutions. 3. Balance. We also give algorithms that with high probability certify that there are no unbalanced solutions, i.e., solutions where the fraction of $+1$s deviates significantly from $50%$. Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal.
Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Constraint Satisfaction Problems (CSPs) where each predicate has a strong and a weak form and given a CSP instance, the objective is to distinguish if the strong form can be satisfied vs. even the weak form cannot be satisfied. Since their formal introduction by Austrin, Guruswami, and Haa stad, there has been a flurry of works on PCSPs [BBKO19,KO19,WZ20]. The key tool in studying PCSPs is the algebraic framework developed in the context of CSPs where the closure properties of the satisfying solutions known as the polymorphisms are analyzed. The polymorphisms of PCSPs are much richer than CSPs. In the Boolean case, we still do not know if dichotomy for PCSPs exists analogous to Schaefers dichotomy result for CSPs. In this paper, we study a special case of Boolean PCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have the predicate $x leq y$. In the algebraic framework, this is the special case of Boolean PCSPs when the polymorphisms are monotone functions. We prove that Boolean Ordered PCSPs exhibit a computational dichotomy assuming the Rich 2-to-1 Conjecture [BKM21] which is a perfect completeness surrogate of the Unique Games Conjecture. Assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP can be solved in polynomial time if for every $epsilon>0$, it has polymorphisms where each coordinate has Shapley value at most $epsilon$, else it is NP-hard. The algorithmic part of our dichotomy is based on a structural lemma that Boolean monotone functions with each coordinate having low Shapley value have arbitrarily large threshold functions as minors. The hardness part proceeds by showing that the Shapley value is consistent under a uniformly random 2-to-1 minor. Of independent interest, we show that the Shapley value can be inconsistent under an adversarial 2-to-1 minor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا