Do you want to publish a course? Click here

Quantum Transport and Field Induced Insulating States in Bilayer Graphene pnp Junctions

160   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform transport measurements in high quality bilayer graphene pnp junctions with suspended top gates. At a magnetic field B=0, we demonstrate band gap opening by an applied perpendicular electric field, with an On/Off ratio up to 20,000 at 260mK. Within the band gap, the conductance decreases exponentially by 3 orders of magnitude with increasing electric field, and can be accounted for by variable range hopping with a gate-tunable density of states, effective mass, and localization length. At large B, we observe quantum Hall conductance with fractional values, which arise from equilibration of edge states between differentially-doped regions, and the presence of an insulating state at filling factor { u}=0. Our work underscores the importance of bilayer graphene for both fundamental interest and technological applications.



rate research

Read More

Using high quality graphene pnp junctions, we observe prominent conductance fluctuations on transitions between quantum Hall (QH) plateaus as the top gate voltage Vtg is varied. In the Vtg-B plane, the fluctuations form crisscrossing lines that are parallel to those of the adjacent plateaus, with different temperature dependences for the conductance peaks and valleys. These fluctuations arise from Coulomb-induced charging of electron- or hole-doped localized states when the device bulk is delocalized, underscoring the importance of electronic interactions in graphene in the QH regime.
176 - J. Velasco Jr. , L. Jing , W. Bao 2011
The flat bands in bilayer graphene(BLG) are sensitive to electric fields Ebot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the possibility of a variety of interesting broken symmetry states, some characterized by spontaneous mass gaps, when the electron-density is at the carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in bilayer graphene are analogous[17,18] to the masses generated by broken symmetries in particle physics and give rise to large momentum-space Berry curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though recent experiments[20-23] have provided convincing evidence of strong electronic correlations near the CNP in BLG, the presence of gaps is difficult to establish because of the lack of direct spectroscopic measurements. Here we present transport measurements in ultra-clean double-gated BLG, using source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the CNP. The gap can be closed by an electric field Ebot sim13 mV/nm but increases monotonically with a magnetic field B, with an apparent particle-hole asymmetry above the gap, thus providing the first mapping of the ground states in BLG.
We report on high-field magnetotransport (B up to 35 T) on a gated superlattice based on single-layer graphene aligned on top of hexagonal boron nitride. The large-period moire modulation (15 nm) enables us to access the Hofstadter spectrum in the vicinity of and above one flux quantum per superlattice unit cell (Phi/Phi_0 = 1 at B = 22 T). We thereby reveal, in addition to the spin-valley antiferromagnet at nu = 0, two insulating states developing in positive and negative effective magnetic fields from the main nu = 1 and nu = -2 quantum Hall states respectively. We investigate the field dependence of the energy gaps associated with these insulating states, which we quantify from the temperature-activated peak resistance. Referring to a simple model of local Landau quantization of third generation Dirac fermions arising at Phi/Phi_0 = 1, we describe the different microscopic origins of the insulating states and experimentally determine the energy-momentum dispersion of the emergent gapped Dirac quasi-particles.
59 - Y. Cao , J. Y. Luo , V. Fatemi 2016
Twisted bilayer graphene (TwBLG) is one of the simplest van der Waals heterostructures, yet it yields a complex electronic system with intricate interplay between moir{e} physics and interlayer hybridization effects. We report on electronic transport measurements of high mobility small angle TwBLG devices showing clear evidence for insulating states at the superlattice band edges, with thermal activation gaps several times larger than theoretically predicted. Moreover, Shubnikov-de Haas oscillations and tight binding calculations reveal that the band structure consists of two intersecting Fermi contours whose crossing points are effectively unhybridized. We attribute this to exponentially suppressed interlayer hopping amplitudes for momentum transfers larger than the moir{e} wavevector.
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the superconducting state with a gate voltage opened up intriguing prospects for novel device functionality. Here we present the first demonstration of a device based on the interplay between two distinct phases in adjustable regions of a single magic-angle twisted bilayer graphene crystal. We electrostatically define the superconducting and insulating regions of a Josephson junction and observe tunable DC and AC Josephson effects. We show that superconductivity is induced in different electronic bands and describe the junction behaviour in terms of these bands, taking in consideration interface effects as well. Shapiro steps, a hallmark of the AC Josephson effect and therefore the formation of a Josephson junction, are observed. This work is an initial step towards devices where separate gate-defined correlated states are connected in single-crystal nanostructures. We envision applications in superconducting electronics and quantum information technology as well as in studies exploring the nature of the superconducting state in magic-angle twisted bilayer graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا