Do you want to publish a course? Click here

Transport Spectroscopy of Symmetry-Broken Insulating States in Bilayer Graphene

176   0   0.0 ( 0 )
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The flat bands in bilayer graphene(BLG) are sensitive to electric fields Ebot directed between the layers, and magnify the electron-electron interaction effects, thus making BLG an attractive platform for new two-dimensional (2D) electron physics[1-5]. Theories[6-16] have suggested the possibility of a variety of interesting broken symmetry states, some characterized by spontaneous mass gaps, when the electron-density is at the carrier neutrality point (CNP). The theoretically proposed gaps[6,7,10] in bilayer graphene are analogous[17,18] to the masses generated by broken symmetries in particle physics and give rise to large momentum-space Berry curvatures[8,19] accompanied by spontaneous quantum Hall effects[7-9]. Though recent experiments[20-23] have provided convincing evidence of strong electronic correlations near the CNP in BLG, the presence of gaps is difficult to establish because of the lack of direct spectroscopic measurements. Here we present transport measurements in ultra-clean double-gated BLG, using source-drain bias as a spectroscopic tool to resolve a gap of ~2 meV at the CNP. The gap can be closed by an electric field Ebot sim13 mV/nm but increases monotonically with a magnetic field B, with an apparent particle-hole asymmetry above the gap, thus providing the first mapping of the ground states in BLG.



rate research

Read More

The quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded and brought into focus the concept of topological order in physics. The topologically protected quantum Hall edge states are of crucial importance to the QH effect but have been measured with limited success. The QH edge states in graphene take on an even richer role as graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials but has eluded spatial measurements. In this report, we map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of $ u=0,pm 1$ across the quantum Hall edge boundary using atomic force microscopy (AFM). Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moire superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns has opened new vistas in the topological materials landscape. Here we report on evidence, obtained by combining thermodynamic measurements, local and non-local transport measurements, and theoretical calculations, that robust topologically non-trivial, valley Chern insulators occur at charge neutrality in twisted double-bilayer graphene (TDBG). These time reversal-conserving valley Chern insulators are enabled by valley-number conservation, a symmetry that emerges from the moire pattern. The thermodynamic gap extracted from chemical potential measurements proves that TDBG is a bulk insulator under transverse electric field, while transport measurements confirm the existence of conducting edge states. A Landauer-Buttiker analysis of measurements on multi-terminal samples allows us to quantitatively assess edge state scattering and demonstrate that it does not destroy the edge states, leaving the bulk-boundary correspondence largely intact.
When twisted to angles near 1{deg}, graphene multilayers provide a new window on electron correlation physics by hosting gate-tuneable strongly-correlated states, including insulators, superconductors, and unusual magnets. Here we report the discovery of a new member of the family, density-wave states, in double bilayer graphene twisted to 2.37{deg}. At this angle the moire states retain much of their isolated bilayer character, allowing their bilayer projections to be separately controlled by gates. We use this property to generate an energetic overlap between narrow isolated electron and hole bands with good nesting properties. Our measurements reveal the formation of ordered states with reconstructed Fermi surfaces, consistent with density-wave states, for equal electron and hole densities. These states can be tuned without introducing chemical dopants, thus opening the door to a new class of fundamental studies of density-waves and their interplay with superconductivity and other types of order, a central issue in quantum matter physics.
115 - Minhao He , Yuhao Li , Jiaqi Cai 2020
A variety of correlated phases have recently emerged in select twisted van der Waals (vdW) heterostructures owing to their flat electronic dispersions. In particular, heterostructures of twisted double bilayer graphene (tDBG) manifest electric field-tunable correlated insulating (CI) states at all quarter fillings of the conduction band, accompanied by nearby states featuring signatures suggestive of superconductivity. Here, we report electrical transport measurements of tDBG in which we elucidate the fundamental role of spontaneous symmetry breaking within its correlated phase diagram. We observe abrupt resistivity drops upon lowering the temperature in the correlated metallic phases neighboring the CI states, along with associated nonlinear $I$-$V$ characteristics. Despite qualitative similarities to superconductivity, concomitant reversals in the sign of the Hall coefficient instead point to spontaneous symmetry breaking as the origin of the abrupt resistivity drops, while Joule heating appears to underlie the nonlinear transport. Our results suggest that similar mechanisms are likely relevant across a broader class of semiconducting flat band vdW heterostructures.
Because of its large density-of-states and the 2{pi} Berry phase near its low-energy band-contact points, neutral bilayer graphene (BLG) at zero magnetic field (B) is susceptible to chiral-symmetry breaking, leading to a variety of gapped spontaneous quantum Hall states distinguished by valley and spin-dependent quantized Hall conductivities. Among these, the layer antiferromagnetic state, which has quantum valley Hall (QVH) effects of opposite sign for opposite spins, appears to be the thermodynamic ground state. Though other gapped states have not been observed experimentally at B=0, they can be explored by exploiting their adiabatic connection to quantum Hall states with the same total Hall conductivity {sigma}H. In this paper, by using a magnetic field to select filling factor { u}=2 states with {sigma}H=2e^2/h, we demonstrate the presence of a quantum anomalous Hall (QAH) state for the majority spin, and a Kekule state with spontaneous valley coherence and a quantum valley Hall state for the minority spin in BLG. By providing the first spectroscopic mapping of spontaneous Hall states at { u}=2, our results shed further light on the rich set of competing ordered states in BLG.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا