Do you want to publish a course? Click here

Development and operation of research-scale III-V nanowire growth reactors

150   0   0.0 ( 0 )
 Added by Jason Petta
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We developed hot-wall and cold-wall metal organic vapor phase epitaxy (MOVPE) reactors for the growth of InAs nanowires, which both use the same gas handling system. The hot-wall reactor is based on an inexpensive quartz tube furnace and yields InAs nanowires for a narrow range of operating conditions. Improvement of crystal quality and an increase in growth run to growth run reproducibility are obtained using a homebuilt UHV cold-wall reactor with a base pressure of 2 X 10$^{-9}$ Torr. A load-lock on the UHV reactor prevents the growth chamber from being exposed to atmospheric conditions during sample transfers. Nanowires grown in the cold-wall system have a low defect density, as determined using transmission electron microscopy, and exhibit field effect gating with mobilities approaching 16,000 cm$^2$(V.s).



rate research

Read More

Nanowire (NW) crystal growth via the vapour_liquid_solid mechanism is a complex dynamic process involving interactions between many atoms of various thermodynamic states. With increasing speed over the last few decades many works have reported on various aspects of the growth mechanisms, both experimentally and theoretically. We will here propose a general continuum formalism for growth kinetics based on thermodynamic parameters and transition state kinetics. We use the formalism together with key elements of recent research to present a more overall treatment of III_V NW growth, which can serve as a basis to model and understand the dynamical mechanisms in terms of the basic control parameters, temperature and pressures/beam fluxes. Self-catalysed GaAs NW growth on Si substrates by molecular beam epitaxy is used as a model system.
Crystal growth of semiconductor nanowires from a liquid droplet depends on the stability of this droplet at the liquid-solid interface. By combining in-situ transmission electron microscopy with theoretical analysis of the surface energies involved, we show that truncation of the interface can increase the stability of the droplet, which in turn increases the range of parameters for which successful nanowire growth is possible. In addition to determining the limits of nanowire growth, this approach allows us to experimentally estimate relevant surface energies, such as the GaAs ${11bar{2}0}$ facet.
We report on the clear evidence of massless Dirac fermions in two-dimensional system based on III-V semiconductors. Using a gated Hall bar made on a three-layer InAs/GaSb/InAs quantum well, we restore the Landau levels fan chart by magnetotransport and unequivocally demonstrate a gapless state in our sample. Measurements of cyclotron resonance at different electron concentrations directly indicate a linear band crossing at the $Gamma$ point of Brillouin zone. Analysis of experimental data within analytical Dirac-like Hamiltonian allows us not only determing velocity $v_F=1.8cdot10^5$ m/s of massless Dirac fermions but also demonstrating significant non-linear dispersion at high energies.
We have developed an efficient scalable kernel method for thermal transport in open systems, with which we have computed the thermal conductance of a junction between bulk silicon and silicon nanowires with diameter up to 10 nm. We have devised scaling laws for transmission and reflection spectra, which allow us to predict the thermal resistance of bulk-nanowire interfaces with larger cross sections than those achievable with atomistic simulations. Our results indicate the characteristic size beyond which atomistic systems can be treated accurately by mesoscopic theories.
Many of the envisioned quantum photonic technologies, e.g. a quantum repeater, rely on an energy- (wavelength-) tunable source of polarization entangled photon pairs. The energy tunability is a fundamental requirement to perform two-photon-interference between different sources and to swap the entanglement. Parametric-down-conversion and four-wave-mixing sources of entangled photons have shown energy tunability, however the probabilistic nature of the sources limits their applications in complex quantum protocols. Here we report a silicon-based hybrid photonic chip where energy-tunable polarization entangled photons are generated by deterministic and scalable III-V quantum light sources. This device is based on a micro-electromechanical system (MEMS) incorporating InAs/GaAs quantum dots (QDs) on a PMNPT-on-silicon substrate. The entangled photon emissions from single QDs can be tuned by more than 3000 times of the radiative linewidth without spoiling the entanglement. With a footprint of several hundred microns, our design facilitates the miniaturization and scalable integration of indistinguishable entangled photon sources on silicon. When interfaced with silicon-based quantum photonic circuits, this device will offer a vast range of exciting possibilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا