Do you want to publish a course? Click here

The Enrichment of the Intergalactic Medium with Adiabatic Feedback I: Metal Cooling and Metal Diffusion

120   0   0.0 ( 0 )
 Added by Sijing Shen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A study of the IGM metal enrichment using a series of SPH simulations is presented, employing metal cooling and turbulent diffusion of metals and thermal energy. An adiabatic feedback mechanism was adopted where gas cooling was prevented to generate galactic winds without explicit wind particles. The simulations produced a cosmic star formation history (SFH) that is broadly consistent with observations until z $sim$ 0.5, and a steady evolution of the universal neutral hydrogen fraction ($Omega_{rm H I}$). At z=0, about 40% of the baryons are in the warm-hot intergalactic medium (WHIM), but most metals (80%-90%) are locked in stars. At higher z the proportion of metals in the IGM is higher due to more efficient loss from galaxies. The IGM metals primarily reside in the WHIM throughout cosmic history. The metallicity evolution of the gas inside galaxies is broadly consistent with observations, but the diffuse IGM is under enriched at z $sim$ 2.5. Galactic winds most efficiently enrich the IGM for halos in the intermediate mass range $10^{10}$M$_{sun}$ - $10^{11}$ M$_{sun}$. At the low mass end gas is prevented from accreting onto halos and has very low metallicities. At the high mass end, the fraction of halo baryons escaped as winds declines along with the decline of stellar mass fraction of the galaxies. This is likely because of the decrease in star formation activity and in wind escape efficiency. Metals enhance cooling which allows WHIM gas to cool onto galaxies and increases star formation. Metal diffusion allows winds to mix prior to escape, decreasing the IGM metal content in favour of gas within galactic halos and star forming gas. Diffusion significantly increases the amount of gas with low metallicities and changes the density-metallicity relation.



rate research

Read More

Observations have established that the diffuse intergalactic medium (IGM) at z ~ 3 is enriched to ~0.1-1% solar metallicity and that the hot gas in large clusters of galaxies (ICM) is enriched to 1/3-1/2 solar metallicity at z=0. Metals in the IGM may have been removed from galaxies (in which they presumably form) during dynamical encounters between galaxies, by ram-pressure stripping, by supernova-driven winds, or as radiation-pressure driven dust efflux. This study develops a method of investigating the chemical enrichment of the IGM and of galaxies, using already completed cosmological simulations. To these simulations, we add dust and (gaseous) metals, distributing the dust and metals in the gas according to three simple parameterized prescriptions, one for each enrichment mechanism. These prescriptions are formulated to capture the basic ejection physics, and calibrated when possible with empirical data. Our results indicate that dynamical removal of metals from >~ 3*10^8 solar mass galaxies cannot account for the observed metallicity of low-column density Ly-alpha absorbers, and that dynamical removal from >~ 3*10^10 solar mass galaxies cannot account for the ICM metallicities. Dynamical removal also fails to produce a strong enough mass-metallicity relation in galaxies. In contrast, either wind or radiation-pressure ejection of metals from relatively large galaxies can plausibly account for all three sets of observations (though it is unclear whether metals can be distributed uniformly enough in the low-density regions without overly disturbing the IGM, and whether clusters can be enriched quite as much as observed). We investigate in detail how our results change with variations in our assumed parameters, and how results for the different ejection processes compare. (Abridged)
We present a study of the effect of AGN feedback on metal enrichment and thermal properties of the intracluster medium (ICM) in hydrodynamical simulations. The cosmological simulations are performed for a set of clusters using a version of the TreePM-SPH Gadget code that follows chemo-dynamical evolution by accounting for metal enrichment by different stellar populations. Besides runs not including any efficient form of energy feedback, we carry out simulations including: (i) kinetic feedback in the form of galactic winds triggered by supernova explosions; (ii) AGN feedback from gas accretion onto super-massive black holes (BHs); (iii) AGN feedback in which a radio mode is included. We find that AGN feedback is able to quench star formation in the brightest cluster galaxies at z<4 and provides correct temperature profiles in the central regions of galaxy groups. However, its effect is not sufficient to create cool cores in massive clusters. AGN feedback creates a widespread enrichment in the outskirts of clusters, thanks to its efficiency in displacing enriched gas from galactic halos to the inter-galactic medium at relatively high redshift. Iron abundance profiles are in better agreement with observations, with a more pristine enrichment of the ICM around and beyond the cluster virial regions. From the pattern of the relative abundances of Silicon and Iron, we conclude that a significant fraction of ICM enrichment in simulations is contributed by a diffuse population of intra-cluster stars. Our simulations also predict that profiles of Z_Si/Z_Fe abundance ratio do not increase at least out to 0.5 R_vir. Our results clearly show that different sources of energy feedback leave distinct imprints in the enrichment pattern of the ICM, that are more evident when looking at cluster external regions.
We test the galactic outflow model by probing associated galaxies of four strong intergalactic CIV absorbers at $z=5$--6 using the Hubble Space Telescope (HST) ACS ramp narrowband filters. The four strong CIV absorbers reside at $z=5.74$, $5.52$, $4.95$, and $4.87$, with column densities ranging from $N_{rm{CIV}}=10^{13.8}$ cm$^{-2}$ to $10^{14.8}$ cm$^{-2}$. At $z=5.74$, we detect an i-dropout Ly$alpha$ emitter (LAE) candidate with a projected impact parameter of 42 physical kpc from the CIV absorber. This LAE candidate has a Ly$alpha$-based star formation rate (SFR$_{rm{Lyalpha}}$) of 2 $M_odot$ yr$^{-1}$ and a UV-based SFR of 4 $M_odot$ yr$^{-1}$. Although we cannot completely rule out that this $i$-dropout emitter may be an [OII] interloper, its measured properties are consistent with the CIV powering galaxy at $z=5.74$. For CIV absorbers at $z=4.95$ and $z=4.87$, although we detect two LAE candidates with impact parameters of 160 kpc and 200 kpc, such distances are larger than that predicted from the simulations. Therefore we treat them as non-detections. For the system at $z=5.52$, we do not detect LAE candidates, placing a 3-$sigma$ upper limit of SFR$_{rm{Lyalpha}}approx 1.5 M_odot$ yr$^{-1}$. In summary, in these four cases, we only detect one plausible CIV source at $z=5.74$. Combining the modest SFR of the one detection and the three non-detections, our HST observations strongly support that smaller galaxies (SFR$_{rm{Lyalpha}} lesssim 2 M_odot$ yr$^{-1}$) are main sources of intergalactic CIV absorbers, and such small galaxies play a major role in the metal enrichment of the intergalactic medium at $zgtrsim5$.
Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, O VI) in the low-redshift (z < 0.4) intergalactic medium and explored C and Si ionization corrections from adjacent ion stages. Both C IV and Si IV have increased in abundance by a factor of ~10 from z = 5.5 to the present. We derive ion mass densities, (rho_ion) = (Omega_ion)(rho_cr) with Omega_ion expressed relative to closure density. Our models of the mass-abundance ratios, (Si III / Si IV) = 0.67(+0.35,-0.19), (C III / C IV) = 0.70(+0.43,-0.20), and (Omega_CIII + Omega_CIV) / (Omega_SiIII + Omega_SiIV) = 4.9(+2.2,-1.1), are consistent with a hydrogen photoionization rate Gamma_H = (8 +/- 2) x 10^{-14} s^{-1} at z < 0.4 and specific intensity I_0 = (3 +/- 1) x 10^{-23} erg/(cm^2 s Hz sr) at the Lyman limit. We find mean photoionization parameter log U = -1.5 +/- 0.4, baryon overdensity Delta_b = 200 +/- 50, and Si/C enhanced to three times its solar ratio (enhancement of alpha-process elements). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, Si VII). Our ionization modeling infers IGM metal densities of (5.4 +/- 0.5) x 10^5 M_sun / Mpc^3 in the photoionized Lya forest traced by the C and Si ions and (9.1 +/- 0.6) x 10^5 M_sun / Mpc^3 in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density rho_Z = (1.5 +/- 0.8) x 10^6 M_sun / Mpc^3 or Omega_Z = 10^{-5}. This represents 10 +/- 5 percent of the metals produced by (6 +/- 2) x 10^8 M_sun / Mpc^3 of integrated star formation with yield y_m = 0.025 +/- 0.010. The missing metals at low redshift may reside within galaxies and in undetected ionized gas in galaxy halos and circumgalactic medium.
One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently `anti-hierarchical evolution of galaxy assembly: massive galaxies appear to be in place since $zsim 3$, while a significant increase of the number densities of low mass galaxies is measured with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes, carried out in the framework of GAEA, a new semi-analytic model of galaxy formation. It includes a self-consistent treatment for the timings of gas, metal and energy recycling, and for the chemical yields. We show this to be crucial to use observational measurements of the metallicity as independent and powerful constraints for the adopted feedback schemes. The observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decrease significantly with cosmic time (as suggested by parametrizations of the cosmological `FIRE simulations). Irrespective of the feedback scheme used, our successful models always imply that up to 60-70 per cent of the baryons reside in an `ejected reservoir and are unavailable for cooling at high redshift. The same schemes predict physical properties of model galaxies (e.g. gas content, colour, age, and metallicity) that are in much better agreement with observational data than our fiducial model. The overall fraction of passive galaxies is found to be primarily determined by internal physical processes, with environment playing a secondary role.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا