No Arabic abstract
Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, O VI) in the low-redshift (z < 0.4) intergalactic medium and explored C and Si ionization corrections from adjacent ion stages. Both C IV and Si IV have increased in abundance by a factor of ~10 from z = 5.5 to the present. We derive ion mass densities, (rho_ion) = (Omega_ion)(rho_cr) with Omega_ion expressed relative to closure density. Our models of the mass-abundance ratios, (Si III / Si IV) = 0.67(+0.35,-0.19), (C III / C IV) = 0.70(+0.43,-0.20), and (Omega_CIII + Omega_CIV) / (Omega_SiIII + Omega_SiIV) = 4.9(+2.2,-1.1), are consistent with a hydrogen photoionization rate Gamma_H = (8 +/- 2) x 10^{-14} s^{-1} at z < 0.4 and specific intensity I_0 = (3 +/- 1) x 10^{-23} erg/(cm^2 s Hz sr) at the Lyman limit. We find mean photoionization parameter log U = -1.5 +/- 0.4, baryon overdensity Delta_b = 200 +/- 50, and Si/C enhanced to three times its solar ratio (enhancement of alpha-process elements). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, Si VII). Our ionization modeling infers IGM metal densities of (5.4 +/- 0.5) x 10^5 M_sun / Mpc^3 in the photoionized Lya forest traced by the C and Si ions and (9.1 +/- 0.6) x 10^5 M_sun / Mpc^3 in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density rho_Z = (1.5 +/- 0.8) x 10^6 M_sun / Mpc^3 or Omega_Z = 10^{-5}. This represents 10 +/- 5 percent of the metals produced by (6 +/- 2) x 10^8 M_sun / Mpc^3 of integrated star formation with yield y_m = 0.025 +/- 0.010. The missing metals at low redshift may reside within galaxies and in undetected ionized gas in galaxy halos and circumgalactic medium.
The low-redshift Ly-alpha forest of absorption lines provides a probe of large-scale baryonic structures in the intergalactic medium, some of which may be remnants of physical conditions set up during the epoch of galaxy formation. We discuss our recent Hubble Space Telescope (HST) observations and interpretation of low-z Ly-alpha clouds toward nearby Seyferts and QSOs, including their frequency, space density, estimated mass, association with galaxies, and contribution to Omega-baryon. Our HST/GHRS detections of 70 Ly-alpha absorbers with N_HI > 10^12.6 cm-2 along 11 sightlines covering pathlength Delta(cz) = 114,000 km/s show f(>N_HI) ~ N_HI^{-0.63 +- 0.04} and a line frequency dN/dz = 200 +- 40 for N_HI > 10^12.6 cm-2 (one every 1500 km/s of redshift). A group of strong absorbers toward PKS 2155-304 may be associated with gas (400-800) h_75^-1 kpc from 4 large galaxies, with low metallicity (< 0.003 solar) and D/H < 2 x 10^-4. At low-z, we derive a metagalactic ionizing radiation field from AGN of J_0 = 1.3^{+0.8 -0.5} x 10^-23 ergs/cm2/s/Hz/sr and a Ly-alpha-forest baryon density Omega-baryon = (0.008 +- 0.004) h_75^-1 [J_-23 N_14 b_100]^{1/2} For clouds of characteristic size b = (100 kpc)b_100.
We investigate the association between galaxies and metal-enriched and metal-deficient absorbers in the local universe ($z < 0.16$) using a large compilation of FUV spectra of bright AGN targets observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. In this homogeneous sample of 18 O VI detections at $N_{rm O,{VI}}geq13.5~mathrm{cm}^{-2}$ and 18 non-detections at $N_{rm O,{VI}}<13.5~mathrm{cm}^{-2}$ using Lya absorbers with ${N_{rm H,{I}}geq} 10^{14}~mathrm{cm}^{-2}$, the maximum distance O VI extends from galaxies of various luminosities is $sim0.6$ Mpc, or $sim5$ virial radii, confirming and refining earlier results. This is an important value that must be matched by numerical simulations, which input the strength of galactic winds at the sub-grid level. We present evidence that the primary contributors to the spread of metals into the circum- and intergalactic media are sub-$L^*$ galaxies ($0.25L^*<L<L^*$). The maximum distances that metals are transported from these galaxies is comparable to, or less than, the size of a group of galaxies. These results suggest that, where groups are present, the metals produced by the group galaxies do not leave the group. Since many O VI non-detections in our sample occur at comparably close impact parameters as the metal-bearing absorbers, some more pristine intergalactic material appears to be accreting onto groups where it can mix with metal-bearing clouds.
The distribution of neutral hydrogen in the intergalactic medium (IGM) is currently explored at low-z by means of UV spectroscopy of quasars. We propose an alternative approach based on UV colours of quasars as observed from GALEX surveys. We built a NUV-selected sample of 9033 quasars with (FUV-NUV) colours. The imprint of HI absorption in the observed colours is suggested qualitatively by their distribution as a function of quasar redshift. Because broad band fluxes lack spectral resolution and are sensitive to a large range of N_HI a Monte Carlo simulation of IGM opacity is required for quantitative analysis. It was performed with absorbers randomly distributed along redshift and column density distributions, assumed to be a broken power law with index beta1 (10^15 < N_HI <10^17.2 cm^-2) and beta2 (10^17.2 < N_HI <10^19 cm^-2). The redshift distribution is proportional to the redshift evolution law of the number density of Lyman limit systems (LLS) per unit redshift as determined by spectroscopic surveys.The simulation is run with different assumptions on the spectral index alpha_nu of the quasar ionising flux. The fits between the simulated and observed distribution of colours require an LLS redshift density larger than that derived from spectroscopic counting. This result is robust in spite of difficulties in determining the colour dispersion other than that due to HI absorption. We provide arguments to retain alpha_nu = - 2, a value already extreme with respect to those measured with HST/COS. Further fitting of power law index beta1 and beta2 leads to a higher density by a factor of 1.7 (beta1 = -1.7, beta2 = -1.5), possibly 1.5 (beta1 = -1.7, beta2 = -1.7). Beyond the result in terms of density the analysis of UV colours of quasars reveals a tension between the current description of IGM opacity at low z and the published average ionising spectrum of quasars.
We present a high resolution (R~500) X-ray spectrum of the bright quasar H1821+643 (z=0.297), obtained in a 470 ksec Chandra observation. We search for X-ray absorption by highly ionized metal species, OVII and OVIII in particular, at the redshifts of the six intervening OVI absorption systems known from UV studies. We detect features with >~2-sigma significance at the predicted OVII and OVIII wavelengths of one OVI system, at the OVII wavelength of a second, and at the NeIX wavelength of a third. We find two additional features of comparable strength (one OVII and one OVIII) within 1000 km/s of OVI redshifts. The 1-sigma constraints in the two detected OVI systems imply gas overdensities lower than the values delta>100 expected in virialized systems, suggesting that the absorption arises in lower density, filamentary structures. At the 2-sigma level, however, the physical constraints are weak. If we treat our 2-sigma detections of known OVI systems as real, but assume minimal OVII and OVIII in the other systems, we estimate [f(OVI)+f(OVII)+f(OVIII)]/f(OVI) = 32 +/- 9 for the average ratio of all highly ionized oxygen species to OVI. Combined with estimates of the total column density of OVI absorption per unit redshift, this ratio implies a total baryon fraction associated with detected OVI absorbers Omega_b(OVI)~0.03/h_70, a substantial fraction of the baryon density predicted by BBN, and larger than that in known low redshift components. Because of the limited S/N of the detections, these results must be treated with caution. Nonetheless, the combination of the OVI data with these X-ray forest measurements provides the most direct evidence to date for the pervasive, moderate density, shock-heated intergalactic medium predicted by leading cosmological scenarios. (Abridged.)
It has been known for decades that the observed number of baryons in the local universe falls about 30-40% short of the total number of baryons predicted by Big-Bang Nucleosynthesis, as inferred from density fluctuations of the Cosmic Microwave Background and seen during the first 2-3 billion years of the universe in the so called Lyman-alpha Forest. A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas - hydrogen - is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios. Indeed, despite the large observational efforts, only a few marginal claims of detection have been made so far. Here we report observations of two absorbers of highly ionized oxygen (OVII) in the high signal-to-noise-ratio X-ray spectrum of a quasar at redshift >0.4. These absorbers show no variability over a 2-year timescale and have no associated cold absorption, making the assumption that they originate from the quasars intrinsic outflow or the host galaxys interstellar medium implausible. The OVII systems lie in regions characterized by large (x4 compared to average) galaxy over-densities and their number (down to the sensitivity threshold of our data), agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium (WHIM). We conclude that the missing baryons have been found.