No Arabic abstract
One major problem of current theoretical models of galaxy formation is given by their inability to reproduce the apparently `anti-hierarchical evolution of galaxy assembly: massive galaxies appear to be in place since $zsim 3$, while a significant increase of the number densities of low mass galaxies is measured with decreasing redshift. In this work, we perform a systematic analysis of the influence of different stellar feedback schemes, carried out in the framework of GAEA, a new semi-analytic model of galaxy formation. It includes a self-consistent treatment for the timings of gas, metal and energy recycling, and for the chemical yields. We show this to be crucial to use observational measurements of the metallicity as independent and powerful constraints for the adopted feedback schemes. The observed trends can be reproduced in the framework of either a strong ejective or preventive feedback model. In the former case, the gas ejection rate must decrease significantly with cosmic time (as suggested by parametrizations of the cosmological `FIRE simulations). Irrespective of the feedback scheme used, our successful models always imply that up to 60-70 per cent of the baryons reside in an `ejected reservoir and are unavailable for cooling at high redshift. The same schemes predict physical properties of model galaxies (e.g. gas content, colour, age, and metallicity) that are in much better agreement with observational data than our fiducial model. The overall fraction of passive galaxies is found to be primarily determined by internal physical processes, with environment playing a secondary role.
Using the GAEA semi-analytic model, we analyse the connection between Damped Lyman-$alpha$ systems (DLAs) and HI in galaxies. Our state-of-the-art semi-analytic model is tuned to reproduce the local galaxy HI mass function, and that also reproduces other important galaxy properties, including the galaxy mass - gas metallicity relation. To produce catalogs of simulated DLAs we throw $10^5$ random lines of sight in a composite simulated volume: dark matter haloes with log$(frac{M_{200}}{ M_{odot}}) geq 11.5$ are extracted from the Millennium Simulation, while for $9.2 leq log(frac{M_{200}}{ M_{odot}})<11.5$ we use the Millennium II, and for $8 leq log(frac{M_{200}}{M_{odot}}) < 9.2$ a halo occupation distribution model. At $2 < z < 3$, where observational data are more accurate, our fiducial model predicts the correct shape of the column density distribution function, but its normalization falls short of the observations, with the discrepancy increasing at higher redshift. The agreement with observations is significantly improved increasing both the HI masses and the disk radii of model galaxies by a factor 2, as implemented a posteriori in our $2M-2R$ model. In the redshift range of interest, haloes with $M_{200} geq {10}^{11} M_{odot}$ give the major contribution to $Omega_{rm DLA}$, and the typical DLA host halo mass is $sim {10}^{11} M _{odot}$. The simulated DLA metallicity distribution is in relatively good agreement with observations, but our model predicts an excess of DLAs at low metallicities. Our results suggest possible improvements for the adopted modelling of the filtering mass and metal ejection in low-mass haloes.
In this work, we study the evolution of the mass-metallicity relations (MZRs) as predicted by the GAlaxy Evolution and Assembly (GAEA) semi-analytic model. We contrast these predictions with recent results from the VANDELS survey, that allows us to expand the accessible redshift range for the stellar MZR up to $zsim3.5$. We complement our study by considering the evolution of the gas-phase MZR in the same redshift range. We show that GAEA is able to reproduce the observed evolution of the $z<3.5$ gas-phase MZR and $z<0.7$ stellar MZR, while it overpredicts the stellar metallicity at $zsim3.5$. Furthermore, GAEA also reproduces the so-called fundamental metallicity relation (FMR) between gas-phase metallicity, stellar mass and star formation rate (SFR). In particular, the gas-phase FMR in GAEA is already in place at $zsim5$ and shows almost no evolution at lower redshift. GAEA predicts the existence of a stellar FMR, that is, however, characterized by a relevant redshift evolution, although its shape follows closely the gas-phase FMR. We also report additional unsolved tensions between model and data: the overall normalization of the predicted MZR agrees with observations only within $sim$0.1 dex; the largest discrepancies are seen at $zsim3.5$ where models tend to slightly overpredict observed metallicities; the slope of the predicted MZR at fixed SFR is too steep below a few ${rm M}_odot {rm yr}^{-1}$. Finally, we provide model predictions for the evolution of the MZRs at higher redshifts, that would be useful in the context of future surveys, like those that will be performed with JWST.
In this work, we investigate the implications of the Integrated Galaxy-wide stellar Initial Mass Function (IGIMF) approach in the framework of the semi-analytic model GAEA (GAlaxy Evolution and Assembly), which features a detailed treatment of chemical enrichment and stellar feedback. The IGIMF provides an analytic description of the dependence of the stellar IMF shape on the rate of star formation in galaxies. We find that our model with a universal IMF predicts a rather flat [$alpha$/Fe]-stellar mass relation. The model assuming the IGIMF, instead, is able to reproduce the observed increase of $alpha$-enhancement with stellar mass, in agreement with previous studies. This is mainly due to the fact that massive galaxies are characterized by larger star formation rates at high-redshift, leading to stronger $alpha$-enhancement with respect to low-mass galaxies. At the same time, the IGIMF hypothesis does not affect significantly the trend for shorter star formation timescales for more massive galaxies. We argue that in the IGIMF scenario the [$alpha$/Fe] ratios are good tracers of the highest star formation events. The final stellar masses and mass-to-light-ratio of our model massive galaxies are larger than those estimated from the synthetic photometry assuming a universal IMF, providing a self-consistent interpretation of similar recent results, based on dynamical analysis of local early type galaxies.
We use a highly complete subset of the GAMA-II redshift sample to fully describe the stellar mass dependence of close-pairs and mergers between 10^8 Msun and 10^12 Msun. Using the analytic form of this fit we investigate the total stellar mass accreting onto more massive galaxies across all mass ratios. Depending on how conservatively we select our robust merging systems, the fraction of mass merging onto more massive companions is 2.0%-5.6%. Using the GAMA-II data we see no significant evidence for a change in the close-pair fraction between redshift $z = 0.05-0.2$. However, we find a systematically higher fraction of galaxies in similar mass close-pairs compared to published results over a similar redshift baseline. Using a compendium of data and the function $gamma_M =A(1+z)m$ to predict the major close-pair fraction, we find fitting parameters of $A = 0.021 pm 0.001$ and $m = 1.53 pm 0.08$, which represents a higher low-redshift normalisation and shallower power-law slope than recent literature values. We find that the relative importance of in-situ star-formation versus galaxy merging is inversely correlated, with star-formation dominating the addition of stellar material below Mstar and merger accretion events dominating beyond Mstar. We find mergers have a measurable impact on the whole extent of the GSMF, manifest as a deepening of the dip in the GSMF over the next Gyr and an increase in Mstar by as much as 0.01-0.05 dex.
We investigate the contentious issue of the presence, or lack thereof, of satellites mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We select groups with halo mass $12 leqslant log(M_{text{halo}}/h^{-1}M_odot) <14.5$ and redshift $z leqslant 0.32$ and probe the radial distribution of stellar mass out to twice the group virial radius. All the samples are carefully constructed to be complete in stellar mass at each redshift range and efforts are made to regularise the analysis for all the data. Our study shows negligible mass segregation in galaxy group environments with absolute gradients of $lesssim0.08$ dex and also shows a lack of any redshift evolution. Moreover, we find that our results at least for the GAMA data are robust to different halo mass and group centre estimates. Furthermore, the EAGLE data allows us to probe much fainter luminosities ($r$-band magnitude of 22) as well as investigate the three-dimensional spatial distribution with intrinsic halo properties, beyond what the current observational data can offer. In both cases we find that the fainter EAGLE data show a very mild spatial mass segregation at $z leqslant 0.22$, which is again not apparent at higher redshift. Interestingly, our results are in contrast to some earlier findings using the Sloan Digital Sky Survey. We investigate the source of the disagreement and suggest that subtle differences between the group finding algorithms could be the root cause.