Do you want to publish a course? Click here

Photometric analysis of the eclipsing binary 2MASS 19090585+4911585

501   0   0.0 ( 0 )
 Added by Stefanie Raetz
 Publication date 2009
  fields Physics
and research's language is English
 Authors St. Raetz




Ask ChatGPT about the research

We report on observations of the eclipsing binary 2MASS 19090585+4911585 with the 25 cm auxiliary telescope of the University Observatory Jena. We show that a nearby brighter star (2MASS 19090783+4912085) was previously misclassified as the eclipsing binary and find 2MASS 19090585+4911585 to be the true source of variation. We present photometric analysis of VRI light curves. The system is an overcontact binary of W UMa type with an orbital period of (0.288374 +/- 0.000010) d.



rate research

Read More

360 - Xiang Gao , Kai Li , Xing Gao 2021
The first photometric analysis of V811 Cep was carried out. The first complete light curves of V, R and I bands are given. The analysis was carried out by Wilson-Devinney (W-D) program, and the results show that V811 Cep is a median-contact binary ($f=33.9(pm4.9)%$) with a mass ratio of 0.285. It is a W-subtype contact binary, that is, the component with less mass is hotter than the component with more mass, and the light curves are asymmetric (OConnell effect), which can be explained by the existence of a hot spot on the component with less mass. The orbital inclination is $i=88.3^{circ}$, indicating that it is a totally eclipsing binary, so the parameters obtained are reliable. Through the O-C analyzing, it is found that the orbital period decreases at the rate of $dot{P}=-3.90(pm0.06)times 10^{-7}d cdot yr^{-1}$, which indicates that the mass transfer occurs from the more massive component to the less massive one.
287 - X.B. Zhang , L.C. Deng , J.F. Tian 2014
We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. Revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. It reveals that OO Dra could be a detached system with the less-massive secondary component nearly filling in its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter and massive primary component. Frequency analysis of the residuals light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.
We present CCD photometric observations of an eclipsing binary in the direction of the open cluster Praesepe using the 2 m telescope of IUCAA Girawali Observatory, India. Though the system was classified as an eclipsing binary by Pepper et al.(2008),detail investigations were lacking. The photometric solutions using the Wilson-Devinney code suggest that it is a W-type W UMa system and interestingly, the system parameters were similar to another contact binary system SW Lac.
The new multi-color $BVRI$ photometric light curves of the short-period eclipsing binary GSC 3576-0170 were obtained on two consecutive nights (October 5 and 6, 2009). With the 2003 version of Wilson-Devinney program, the precise photometric solutions are derived for the first time. The result shows that GSC 3576-0170 is a semi-detached binary system with a large temperature difference of approximately 1490 K. The light-curve distortions are further explained by a hot spot on the secondary component through mass transfer via a stream hitting the facing surface of the secondary component. By analyzing all available light minimum times, we also derived an update ephemeris and found for the first time a possible periodic oscillation with an amplitude of 0.0038 days and a period of 4.3 years. The periodic oscillation could be explained either by the light-time effect due to a presumed third component or by magnetic activity cycle of the system.
We present new spectroscopic observations of the early type, double-lined eclipsing binary V1441,Aql. The radial velocities and the available photometric data obtained by $ASAS$ is analysed for deriving the parameters of the components. The components of V1441,Aql are shown to be a B3,IV primary with a mass M$_p$=8.02$pm$0.51 M$_{odot}$ and radius R$_p$=7.33$pm$0.19 R$_{odot}$ and a B9 III secondary with a mass M$_s$=1.92$pm$0.14 M$_{odot}$ and radius R$_s$=4.22$pm$0.11 R$_{odot}$. Our analyses show that V1441,Aql is a double-contact system with rapidly rotating components. Based on the position of the components plotted on the theoretical Hertzsprung-Russell diagram, we estimate that the ages of V1441,Aql is about 30,Myr, neglecting the effects of mass exchange between the components. Using the UBVJHK magnitudes and interstellar absorption we estimated the mean distance to the system V1441,Aql as 550$pm$25,pc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا