No Arabic abstract
The new multi-color $BVRI$ photometric light curves of the short-period eclipsing binary GSC 3576-0170 were obtained on two consecutive nights (October 5 and 6, 2009). With the 2003 version of Wilson-Devinney program, the precise photometric solutions are derived for the first time. The result shows that GSC 3576-0170 is a semi-detached binary system with a large temperature difference of approximately 1490 K. The light-curve distortions are further explained by a hot spot on the secondary component through mass transfer via a stream hitting the facing surface of the secondary component. By analyzing all available light minimum times, we also derived an update ephemeris and found for the first time a possible periodic oscillation with an amplitude of 0.0038 days and a period of 4.3 years. The periodic oscillation could be explained either by the light-time effect due to a presumed third component or by magnetic activity cycle of the system.
We present the first BVR photometry, period variation, and photometric light-curve analysis of two poorly studied eclipsing binaries V1321 Cyg and CR Tau. Observations were carried out from November 2017 to January 2020 at the observatory of Uzhhorod National University. Period variations were studied using all available early published as well as our minima times. We have used newly developed ELISa code for the light curve analysis and determination of photometric parameters of both systems. We found that V1321 Cyg is a close detached eclipsing system with a low photometric mass ratio of $q=0.28$ which suggests that the binary is a post mass transfer system. No significant period changes in this system are detected. CR Tau is, on the other hand, a semi-detached system where the secondary component almost fills its Roche lobe. We detected a long-term period increase at a rate of $1.49 times 10^{-7} d/y$, which support mass transfer from lower mass secondary component to the more massive primary.
We present CCD photometric observations of an eclipsing binary in the direction of the open cluster Praesepe using the 2 m telescope of IUCAA Girawali Observatory, India. Though the system was classified as an eclipsing binary by Pepper et al.(2008),detail investigations were lacking. The photometric solutions using the Wilson-Devinney code suggest that it is a W-type W UMa system and interestingly, the system parameters were similar to another contact binary system SW Lac.
We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. Revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. It reveals that OO Dra could be a detached system with the less-massive secondary component nearly filling in its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter and massive primary component. Frequency analysis of the residuals light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.
Double Periodic Variables (DPV) are among the new enigmas of semi-detached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of $33.492 pm 0.002$ d and a long period of 1283 d. We find a cool evolved star of $M_{2}=0.91pm 0.2 M_{odot}$, $T_{2}= 6000pm 250 K$ and $R_{2}=19.3 pm 0.5 R_{odot}$ and a hot companion of $M_{1}= 5.76pm 0.3 M_{odot}$, $T_{1}=16960pm 400 K$ and $R=4.5pm0.2 R_{odot}$. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension $R_{d}= 40.2pm 1.3 R_{odot}$ contributing $sim$ 11 percent to the total luminosity of the system at the V band. The system is seen under inclination $84.!!^{circ}8$ $pm$ $0.!!^{circ}6$ and it is at a distance $d= 2092 pm 104.6$ pc. The light curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 % hotter than the surrounding disc material. The persistent $V<R$ asymmetry of the H$alpha$ emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.
We present our new photometry of DV Psc obtained in 2010 and 2011, and new spectroscopic observation on Feb. 14, 2012. During our observations, three flare-like events might be detected firstly in one period on DV Psc. The flare rate of DV Psc is about 0.017 flares per hour. Using Wilson-Devinney program, we derived the preliminary starspot parameters. Moreover, the magnetic cycle is 9.26(+/-0.78) year analyzed by variabilities of Max.I - Max.II.