Do you want to publish a course? Click here

The first photometric analysis of the totally eclipsing contact binary V811 Cep

361   0   0.0 ( 0 )
 Added by Kai Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first photometric analysis of V811 Cep was carried out. The first complete light curves of V, R and I bands are given. The analysis was carried out by Wilson-Devinney (W-D) program, and the results show that V811 Cep is a median-contact binary ($f=33.9(pm4.9)%$) with a mass ratio of 0.285. It is a W-subtype contact binary, that is, the component with less mass is hotter than the component with more mass, and the light curves are asymmetric (OConnell effect), which can be explained by the existence of a hot spot on the component with less mass. The orbital inclination is $i=88.3^{circ}$, indicating that it is a totally eclipsing binary, so the parameters obtained are reliable. Through the O-C analyzing, it is found that the orbital period decreases at the rate of $dot{P}=-3.90(pm0.06)times 10^{-7}d cdot yr^{-1}$, which indicates that the mass transfer occurs from the more massive component to the less massive one.



rate research

Read More

101 - Kai Li , Qi-Qi Xia , Chun-Hwey Kim 2021
High precision CCD observations of six totally eclipsing contact binaries were presented and analyzed. It is found that only one target is an A-type contact binary (V429 Cam), while the others are W-type contact ones. By analyzing the times of light minima, we discovered that two of them exhibit secular period increase while three manifest long-term period decrease. For V1033 Her, a cyclic variation superimposed on the long-term increase was discovered. By comparing the Gaia distances with those calculated by the absolute parameters of 173 contact binaries, we found that Gaia distance can be applied to estimate absolute parameters for most contact binaries. The absolute parameters of our six targets were estimated by using their Gaia distances. The evolutionary status of contact binaries was studied, we found that the A- and W- subtype contact binaries may have different formation channels. The relationship between the spectroscopic and photometric mass ratios for 101 contact binaries was presented. It is discovered that the photometric mass ratios are in good agreement with the spectroscopic ones for almost all the totally eclipsing systems, which is corresponding to the results derived by Pribulla et al. and Terrell & Wilson.
494 - St. Raetz 2009
We report on observations of the eclipsing binary 2MASS 19090585+4911585 with the 25 cm auxiliary telescope of the University Observatory Jena. We show that a nearby brighter star (2MASS 19090783+4912085) was previously misclassified as the eclipsing binary and find 2MASS 19090585+4911585 to be the true source of variation. We present photometric analysis of VRI light curves. The system is an overcontact binary of W UMa type with an orbital period of (0.288374 +/- 0.000010) d.
77 - X. Zhou , S.-B. Qian , A. Essam 2016
Two sets of light curves in $V$ $R_c$ $I_c$ bands for a newly discovered binary system UCAC4 436-062932 are obtained and analyzed using the Wilson-Devinney (W-D) code. The two sets of light curves get almost consistent results. The determined mass ratio is about $q = 2.7$ and the less massive component is nearly $250K$ hotter than the more massive one. The solutions conclude that UCAC4 436-062932 is a W-subtype shallow contact (with a contact degree of $f = 20,%$) binary system. Since the OConnell effect appears on one set of the light curves, theories proposed to explain the effect are discussed. We assume that spot model may be the more plausible one to the OConnell effect appeared on the asymmetric light curves of the binary system UCAC4 436-062932. Therefore, we add a cool spot on the surface of the more massive star (component with lower effective temperature) and get a quite approving results for the light curve fitting. It will provide evidence to support the spot model in the explanatory mechanism of OConnell effect.
V453 Cyg is an eclipsing binary containing 14 Msun and 11 Msun stars in an eccentric short-period orbit. We have discovered $beta$ Cep-type pulsations in this system using TESS data. We identify seven significant pulsation frequencies, between 2.37 and 10.51 d$^{-1}$, in the primary star. These include six frequencies which are separated by yet significantly offset from harmonics of the orbital frequency, indicating they are tidally-perturbed modes. We have determined the physical properties of the system to high precision: V453 Cyg A is the first $beta$ Cep pulsator with a precise mass measurement. The system is a vital tracer of the physical processes that govern the evolution of massive single and binary stars.
The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ~1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا