No Arabic abstract
Despite extensive research on the skutterudites for the last decade, their electric crystalline field ground state is still a matter of controversy. We show that Electron Spin Resonance (ESR) measurements can determine the full set of crystal field parameters (CFPs) for the Th cubic symmetry (Im3) of the Ce$_{1-x}$R$_{x}$Fe$_{4}$P$_{12}$ (R = Dy, Er, Yb, $xlesssim 0.003$) skutterudite compounds. From the analysis of the ESR data the three CFPs, B4c, B6c and B6t were determined for each of these rare-earths at the Ce$^{3+}$ site. The field and temperature dependence of the measured magnetization for the doped crystals are in excellent agreement with the one predicted by the CFPs Bnm derived from ESR.
Magnetization, specific heat, and electrical resistivity measurements were made on single crystals of the filled skutterudite compound PrOs$_{4}$As$_{12}$. Specific heat measurements indicate an electronic specific heat coefficient $gamma$ $sim 50-200$ mJ/mol K$^{2}$ at temperatures 10 K $leq T leq 18$ K, and $sim 1$ J/mol K$^{2}$ for $T leq 1.6$ K. Magnetization, specific heat, and electrical resistivity measurements reveal the presence of two, or possibly three, ordered phases at temperatures below $sim 2.3$ K and in fields below $sim 3$ T. The low temperature phase displays antiferromagnetic characteristics, while the nature of the ordering in the other phase(s) has yet to be determined.
Electrical resistivity $rho$, specific heat C, and magnetic susceptibility $chi$ measurements made on the filled skutterudite CeRu_4As_{12} reveal non-Fermi liquid (NFL) T - dependences at low T, i.e., $rho$(T) $sim$ T^{1.4} and weak power law or logarithmic divergences in C(T)/T and $chi$(T). Measurements also show that the T - dependence of the thermoelectric power S(T) deviates from that seen in other Ce systems. The NFL behavior appears to be associated with fluctuations of the Ce valence between 3^+ and 4^+ rather than a typical Kondo lattice scenario that would be appropriate for an integral Ce valence of 3^+.
The search for topological states in strongly correlated electron systems has renewed the interest in the Kondo insulator SmB6. One of the most intriguing previous results was an anomalous electron spin resonance spectrum in Gd-doped SmB6. This spectrum was attributed to Gd2+ ions because it could be very well decribed by a model considering a change in the valence from Gd3+ to Gd2+, a dynamic Jahn-Teller effect and a 4f7 5d1 ground state in the Hamiltonian. In our work, we have revisited this scenario using electron spin resonance and energy dispersive X-ray spectroscopy measurements. Our results suggest that the resonance is produced by Gd2+ ions; however the resonance stems from an extrinsic oxide impurity phase that lies on the surface of the crystal.
We present a systematic study of the crystal field interactions in the Li$R$F$_4$, $R$ = Gd, Ho, Er, Tm and Yb, family of rare-earth magnets. Using detailed inelastic neutron scattering measurements we have been able to quantify the transition energies and wavefunctions for each system. This allows us to quantitatively describe the high-temperature susceptibility measurements for the series of materials and make predictions based on a mean-field approach for the low-temperature thermal and quantum phase transitions. We show that coupling between crystal field and phonon states leads to lineshape broadening in LiTmF$_4$ and level splitting in LiYbF$_4$. Furthermore, using high resolution neutron scattering from LiHoF$_4$, we find anomalous broadening of crystal-field excitations which we attribute to magnetoelastic coupling.
Epitaxially grown intermetallic RFe2 (R = Dy, Er, Y) thin films have been studied by point contact Andreev reflection. Spin polarization values were extracted by fitting normalized conductance curves for mechanical Nb/RFe2 point contacts, using a modified Blonder-Tinkham-Klapwijk (BTK) model. Good agreement is found between this model and the experimentally obtained data. Extracted values of spin polarization, which are close to the spin polarization of Fe, reveal no variation with the rare earth component for the measured intermetallic compounds. This suggests that using this technique we probe the Fe sub-lattice, and that this lattice drives spintronic effects in these compounds.