No Arabic abstract
Electrical resistivity $rho$, specific heat C, and magnetic susceptibility $chi$ measurements made on the filled skutterudite CeRu_4As_{12} reveal non-Fermi liquid (NFL) T - dependences at low T, i.e., $rho$(T) $sim$ T^{1.4} and weak power law or logarithmic divergences in C(T)/T and $chi$(T). Measurements also show that the T - dependence of the thermoelectric power S(T) deviates from that seen in other Ce systems. The NFL behavior appears to be associated with fluctuations of the Ce valence between 3^+ and 4^+ rather than a typical Kondo lattice scenario that would be appropriate for an integral Ce valence of 3^+.
Magnetization, specific heat, and electrical resistivity measurements were made on single crystals of the filled skutterudite compound PrOs$_{4}$As$_{12}$. Specific heat measurements indicate an electronic specific heat coefficient $gamma$ $sim 50-200$ mJ/mol K$^{2}$ at temperatures 10 K $leq T leq 18$ K, and $sim 1$ J/mol K$^{2}$ for $T leq 1.6$ K. Magnetization, specific heat, and electrical resistivity measurements reveal the presence of two, or possibly three, ordered phases at temperatures below $sim 2.3$ K and in fields below $sim 3$ T. The low temperature phase displays antiferromagnetic characteristics, while the nature of the ordering in the other phase(s) has yet to be determined.
X-ray diffraction, electrical resistivity, magnetization, specific heat, and thermoelectric power measurements are presented for single crystals of the new filled skutterudite compound {CeOsAs}, which reveal phenomena that are associated with f - electron - conduction electron hybridization. Valence fluctuations or Kondo behavior dominates the physics down to $T$ $sim$ 135 K. The correlated electron behavior is manifested at low temperatures as a hybridization gap insulating state. The small energy gap $Delta$$_1$/k$_B$ $sim$ 73 K, taken from fits to electrical resistivity data, correlates with the evolution of a weakly magnetic or nonmagnetic ground state, which is evident in the magnetization data below a coherence temperature $T$$_{coh}$ $sim$ 45 K. Additionally, the low temperature electronic specific heat coefficient is small, $gamma$ $sim$ 19 mJ/mol K$^2$. Some results for the nonmagnetic analogue compound {LaOsAs} are also presented for comparison purposes.
$alpha$-YbAlB$_4$ is the locally isostructural polymorph of $beta$-YbAlB$_4$, the first example of an Yb-based heavy fermion superconductor which exhibits pronounced non-Fermi-liquid behavior above $T_{rm c}$. Interestingly, both $alpha$-YbAlB$_4$ and $beta$-YbAlB$_4$ have strongly intermediate valence. Our single crystal study of the specific heat, magnetization and resistivity has confirmed the Fermi liquid ground state of $alpha$-YbAlB$_4$ ~in contrast with the quantum criticality observed in $beta$-YbAlB$_4$. Both systems exhibit Kondo lattice behavior with the characteristic temperature scale $T^* sim$ 8 K in addition to a valence fluctuation scale $sim 200$ K. Below $T^*$, $alpha$-YbAlB$_4$ a heavy Fermi liquid state with an electronic specific heat coefficient $gammasim$ 130 mJ/mol K$^2$ and a large Wilson ratio more than 7, which indicates ferromagnetic correlation between Yb moments. A large anisotropy in the resistivity suggests that the hybridization between 4$f$ and conduction electrons is much stronger in the $ab$-plane than along the c-axis. The strongly anisotropic hybridization as well as the large Wilson ratio is the key to understand the unusual Kondo lattice behavior and heavy fermion formation in mixed valent compounds.
The filled skutterudite compound PrOsSb{} exhibits superconductivity below a critical temperature $T_mathrm{c} = 1.85$ K that develops out of a nonmagnetic heavy Fermi liquid with an effective mass $m^{*} approx 50 m_mathrm{e}$, where $m_mathrm{e}$ is the free electron mass. Analysis of magnetic susceptibility, specific heat, electrical resistivity and inelastic neutron scattering measurements within the context of a cubic crystalline electric field yields a Pr$^{3+}$ energy level scheme that consists of a $Gamma_{3}$ nonmagnetic doublet ground state that carries an electric quadrupole moment, a low lying $Gamma_{5}$ triplet excited state at $sim 10$ K, and $Gamma_{4}$ triplet and $Gamma_{1}$ singlet excited states at much higher temperatures. The superconducting state appears to be unconventional and to consist of two distinct superconducting phases. An ordered phase of magnetic or quadrupolar origin occurs at high fields and low temperatures, suggesting that the superconductivity may occur in the vicinity of a magnetic or electric quadrupolar quantum critical point.
Anomalous metal-insulator transition observed in filled skutterudite CeOs$_4$Sb$_{12}$ is investigated by constructing the effective tight-binding model with the Coulomb repulsion between f electrons. By using the mean field approximation, magnetic susceptibilities are calculated and the phase diagram is obtained. When the band structure has a semimetallic character with small electron and hole pockets at $Gamma$ and H points, a spin density wave transition with the ordering vector $mathbf{Q}=(1,0,0)$ occurs due to the nesting property of the Fermi surfaces. Magnetic field enhances this phase in accord with the experiments.